Realization of the Cirac–Zoller controlled-NOT quantum gate (original) (raw)
Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett.74, 4091–4094 (1995) ArticleADSCAS Google Scholar
Nägerl, H. C. et al. Laser addressing of individual ions in a linear ion trap. Phys. Rev. A60, 145–148 (1999) ArticleADS Google Scholar
Nägerl, H. C. et al. Investigating a qubit candidate: Spectroscopy on the S1/2 to D5/2 transition of a trapped calcium ion in a linear Paul trap. Phys. Rev. A61, 023405 (2000) ArticleADS Google Scholar
Häffner, H. et al. Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor. Phys. Rev. Lett. (in the press); preprint available at 〈http://arXiv.org/abs/physics/0212040〉 (2002)
Childs, A. M. & Chuang, I. M. Universal quantum computation with two-level trapped ions. Phys. Rev. A63, 012306 (2001) ArticleADS Google Scholar
Levitt, M. H. Composite pulses (NMR spectroscopy). Prog. Nucl. Magn. Reson. Spectrosc.18, 61–122 (1986) ArticleADSCAS Google Scholar
DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys.48, 771–783 (2000) Article Google Scholar
DiVincenzo, D. P. Two-bit gates are universal for quantum computation. Phys. Rev. A51, 1015–1022 (1995) ArticleADSCAS Google Scholar
Shor, P. W. in Proc. 35th Annu. Symp. Foundations of Computer Science (ed. Goldwasser, S.) 124–133 (IEEE Computer Society Press, Los Alamitos, California, 1994) Book Google Scholar
Vandersypen, L. M. K. et al. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. Nature414, 883–887 (2001) ArticleADSCAS Google Scholar
Šašura, M. & Bužek, V. Cold trapped ions as quantum information processors. J. Mod. Opt.49, 1593–1647 (2002) ArticleADSMathSciNet Google Scholar
Roos, Ch. et al. Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys. Rev. Lett.83, 4713–4716 (1999) ArticleADSCAS Google Scholar
Meekhof, D. M., Monroe, C., King, B. E., Itano, W. M. & Wineland, D. J. Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett.76, 1796–1799 (1996) ArticleADSCAS Google Scholar
Dehmelt, H. Proposed 1014Δν > ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator. Bull. Am. Phys. Soc.20, 60 (1975) Google Scholar
Turchette, Q. A. et al. Deterministic entanglement of two trapped ions. Phys. Rev. Lett.81, 3631–3634 (1998) ArticleADSCAS Google Scholar
Sackett, C. A. et al. Experimental entanglement of four particles. Nature404, 256–259 (2000) ArticleADSCAS Google Scholar
Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett.75, 4714–4717 (1995) ArticleADSMathSciNetCAS Google Scholar
Gulde, S. et al. Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Nature421, 48–50 (2003) ArticleADSCAS Google Scholar
Rohde, H. et al. Sympathetic ground state cooling and coherent manipulation with two-ion crystals. J. Opt. B3, S34–S41 (2001) ArticleCAS Google Scholar
Jones, J. A. Robust Ising gates for practical quantum computation. Phys. Rev. A67, 012317 (2003) ArticleADS Google Scholar
de Vivie-Riedle, R., Rabitz, H. & Kompa, K. (eds) Chem. Phys., 267, Issues 1–3 (2001). Special issue on coherent control.
Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature403, 515–519 (2000) ArticleADSCAS Google Scholar
Steane, A. M. Efficient fault-tolerant quantum computing. Nature399, 124–126 (1999) ArticleADSCAS Google Scholar
Duan, L. M., Lukin, M., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature414, 413–418 (2001) ArticleADSCAS Google Scholar