Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for the mass spectrometry of large biomolecules. Science246, 64–71 (1989). ADSCASPubMed Google Scholar
Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular mass exceeding 10000 daltons. Anal. Chem.60, 2299–2301 (1988). CASPubMed Google Scholar
Aebersold, R. & Goodlett, D. R. Mass spectrometry in proteomics. Chem. Rev.101, 269–295 (2001). CASPubMed Google Scholar
Mann, M., Hendrickson, R. C. & Pandey, A. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem.70, 437–473 (2001). CASPubMed Google Scholar
Hager, J. W. A new linear ion trap mass spectrometer. Rapid Commun. Mass. Spectrom.16, 512–526 (2002). ADSCAS Google Scholar
Schwartz, J. C., Senko, M. W. & Syka, J. E. A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom.13, 659–669 (2002). CASPubMed Google Scholar
Marshall, A. G., Hendrickson, C. L. & Jackson, G. S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev.17, 1–35 (1998). ADSCASPubMed Google Scholar
Valaskovic, G. A., Kelleher, N. L. & McLafferty, F. W. Attomole protein characterization by capillary electrophoresis-mass spectrometry. Science273, 1199–2202 (1996). ADSCASPubMed Google Scholar
Martin, S. E., Shabanowitz, J., Hunt, D. F. & Marto, J. A. Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem.72, 4266–4274 (2000). CASPubMed Google Scholar
Lipton, M. S. et al. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl Acad. Sci. USA99, 11049–11054 (2002). ADSCASPubMedPubMed Central Google Scholar
Krutchinsky, A. N., Kalkum, M. & Chait, B. T. Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. Anal. Chem.73, 5066–5077 (2001). CASPubMed Google Scholar
Medzihradszky, K. F. et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem.72, 552–558 (2000). CASPubMed Google Scholar
Loboda, A. V., Krutchinsky, A. N., Bromirski, M., Ens, W. & Standing, K. G. A tandem quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun. Mass Spectrom.14, 1047–1057 (2000). ADSCASPubMed Google Scholar
Mann, M. & Wilm, M. S. Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem.66, 4390–4399 (1994). CASPubMed Google Scholar
Eng, J. K., McCormack, A. L. & Yates, J. R. I An approach to correlate MS/MS data to amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom.5, 976–989 (1994). CASPubMed Google Scholar
Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis20, 3551–3567 (1999). ArticleCASPubMed Google Scholar
Anderson, N. L., Hofmann, J. P., Gemmell, A. & Taylor, J. Global approaches to quantitative analysis of gene-expression patterns observed by use of two-dimensional gel electrophoresis. Clin. Chem.30, 2031–2036 (1984). CASPubMed Google Scholar
Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y. & Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl Acad. Sci. USA97, 9390–9395 (2000). ADSCASPubMedPubMed Central Google Scholar
Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics2, 3–10 (2002). CASPubMed Google Scholar
Unlu, M., Morgan, M. E. & Minden, J. S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis18, 2071–2077 (1997). CASPubMed Google Scholar
Gauss, C., Kalkum, M., Lowe, M., Lehrach, H. & Klose, J. Analysis of the mouse proteome. (I) Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis20, 575–600 (1999). CASPubMed Google Scholar
Hunt, D. F. et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science255, 1261–1263 (1992). ADSCASPubMed Google Scholar
Wolters, D. A., Washburn, M. P. & Yates, J. R. III An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem.73, 5683–5690 (2001). CASPubMed Google Scholar
Link, A. J. et al. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnol.17, 676–682 (1999). CAS Google Scholar
Han, D. K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nature Biotechnol.19, 946–951 (2001). CAS Google Scholar
Gygi, S. P., Rist, B., Griffin, T. J., Eng, J. & Aebersold, R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J. Proteome Res.1, 47–54 (2002). CASPubMed Google Scholar
Washburn, M. P., Wolters, D. & Yates, J. R. III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol.19, 242–247 (2001). CAS Google Scholar
Conrads, T. P., Issaq, H. J. & Veenstra, T. D. New tools for quantitative phosphoproteome analysis. Biochem. Biophys. Res. Commun.290, 885–890 (2002). CASPubMed Google Scholar
Mirgorodskaya, O. A. et al. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using 18O-labeled internal standards. Rapid Commun. Mass Spectrom.14, 1226–1232 (2000). ADSCASPubMed Google Scholar
Yao, X., Freas, A., Ramirez, J., Demirev, P. A. & Fenselau, C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal. Chem.73, 2836–2842 (2001). CASPubMed Google Scholar
Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol.17, 994–999 (1999). CAS Google Scholar
Zhou, H., Ranish, J. A., Watts, J. D. & Aebersold, R. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nature Biotechnol.20, 512–515 (2002). CAS Google Scholar
Munchbach, M., Quadroni, M., Miotto, G. & James, P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal. Chem.72, 4047–4057 (2000). CASPubMed Google Scholar
Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA96, 14694–14699 (1999). ADSCASPubMedPubMed Central Google Scholar
Greenbaum, D., Medzihradszky, K. F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol.7, 569–581 (2000). CASPubMed Google Scholar
Zhou, H., Watts, J. D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nature Biotechnol.19, 375–378 (2001). CAS Google Scholar
Oda, Y., Nagasu, T. & Chait, B. T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature Biotechnol.19, 379–382 (2001). CAS Google Scholar
Zhang, H., Li, X.-J., Martin, D. & Aebersold, R. Quantitative analysis of glycoproteins: applications to serum and membrane proteins. (submitted).
Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1, 376–386 (2002). CASPubMed Google Scholar
Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem.74, 5383–5392 (2002). CASPubMed Google Scholar
Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. & Gygi, S. P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. DOI: 10.1021/pr025556v (2002).
Oshiro, G. et al. Parallel identification of new genes in Saccharomyces cerevisiae. Genome Res.12, 1210–1220 (2002). CASPubMedPubMed Central Google Scholar
Kuster, B., Mortensen, P., Andersen, J. S. & Mann, M. Mass spectrometry allows direct identification of proteins in large genomes. Proteomics1, 641–650 (2001). CASPubMed Google Scholar
Andersen, J. S. et al. Directed proteomic analysis of the human nucleolus. Curr. Biol.12, 1–11 (2002). PubMed Google Scholar
Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics1, 845–867 (2002). CASPubMed Google Scholar
Adkins, J. N. et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics DOI: 10.1074/mcp.M200066-MCP200 (2002).
Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature419, 537–542 (2002). ADSCASPubMed Google Scholar
Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature419, 520–526 (2002). ADSCASPubMed Google Scholar
Griffin, T. J. et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics1, 323–333 (2002). CASPubMed Google Scholar
Baliga, N. S. et al. Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach. Proc. Natl Acad. Sci. USA99, 14913–14918 (2002). ADSCASPubMedPubMed Central Google Scholar
Rappsilber, J., Siniossoglou, S., Hurt, E. C. & Mann, M. A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal. Chem.72, 267–275 (2000). CASPubMed Google Scholar
Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol.17, 1030–1032 (1999). CAS Google Scholar
Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147 (2002). ADSCASPubMed Google Scholar
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002). ADSCASPubMed Google Scholar
von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature417, 399–403 (2002). ADSCASPubMed Google Scholar
Shevchenko, A., Schaft, D., Roguev, A., Pijnappel, W. W. & Stewart, A. F. Deciphering protein complexes and protein interaction networks by tandem affinity purification and mass spectrometry: analytical perspective. Mol. Cell. Proteomics1, 204–212 (2002). CASPubMed Google Scholar
Blagoev, B. et al. A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nature Biotechnol. advance online publication, 10 February 2003 (doi:10.1038/nbt790).
Ranish, J. A. et al. The study of macromolecular complexes by quantitative proteomics. Nature Genet. (in the press).
MacDonald, J. A., Mackey, A. J., Pearson, W. R. & Haystead, T. A. A strategy for the rapid identification of phosphorylation sites in the phosphoproteome. Mol. Cell. Proteomics1, 314–322 (2002). CASPubMed Google Scholar
Neubauer, G. et al. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc. Natl Acad. Sci. USA94, 385–390 (1997). ADSCASPubMedPubMed Central Google Scholar
Neubauer, G. et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genet.20, 46–50 (1998). CASPubMed Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000). CASPubMedPubMed Central Google Scholar
Rappsilber, J., Ryder, U., Lamond, A. I. & Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res.12, 1231–1245 (2002). CASPubMedPubMed Central Google Scholar
Zhou, Z., Licklider, L. J., Gygi, S. P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature419, 182–185 (2002). ADSCASPubMed Google Scholar
Taylor, S. W., Fahy, E. & Ghosh, S. S. Global organellar proteomics. Trends Biotechnol.21, 82–88 (2003). CASPubMed Google Scholar
Leung, A. K. & Lamond, A. I. In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J. Cell Biol.157, 615–629 (2002). CASPubMedPubMed Central Google Scholar
Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol.20, 261–268 (2002). CASPubMed Google Scholar
Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nature Biotechnol. (in the press).
MacCoss, M. J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl Acad. Sci. USA99, 7900–7905 (2002). ADSCASPubMedPubMed Central Google Scholar
Pandey, A. et al. Analysis of receptor signaling pathways by mass spectrometry: identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl Acad. Sci. USA97, 179–184 (2000). ADSCASPubMedPubMed Central Google Scholar
Steen, H., Kuster, B., Fernandez, M., Pandey, A. & Mann, M. Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem.277, 1031–1039 (2002). CASPubMed Google Scholar
Ficarro, S. B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnol.20, 301–305 (2002). CAS Google Scholar
Peng, J. & Gygi, S. P. Proteomics: the move to mixtures. J. Mass Spectrom.36, 1083–1091 (2001). ADSCASPubMed Google Scholar
Hanson, C. L., Fucini, P., Ilag, L. L., Nierhaus, K. H. & Robinson, C. V. Dissociation of intact Escherichia coli ribosomes in a mass spectrometer—evidence for conformational change in a ribosome elongation factor G complex. J. Biol. Chem.278, 1259–1267 (2002). PubMed Google Scholar
Oh, H. et al. Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc. Natl Acad. Sci. USA99, 15863–15868 (2002). ADSCASPubMedPubMed Central Google Scholar
Cohen, S. L. & Chait, B. T. Mass spectrometry as a tool for protein crystallography. Annu. Rev. Biophys. Biomol. Struct.30, 67–85 (2001). CASPubMed Google Scholar
Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA95, 14863–14868 (1998). ADSCASPubMedPubMed Central Google Scholar
Aebersold, R. & Watts, J. D. The need for national centers for proteomics. Nature Biotechnol.20, 651 (2002). CAS Google Scholar
Petricoin, E. F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet359, 572–577 (2002). CASPubMed Google Scholar
Mørtz, E. et al. Sequence tag identification of intact proteins by matching tandem mass spectral data against sequence data bases. Proc. Natl Acad. Sci. USA93, 8264–8267 (1996). ADSPubMedPubMed Central Google Scholar
Stoeckli, M., Chaurand, P., Hallahan, D. E. & Caprioli, R. M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nature Med.7, 493–496 (2001). CASPubMed Google Scholar
Goodlett, D. R. et al. Protein identification with a single accurate mass of a cysteine-containing peptide and constrained database searching. Anal. Chem.72, 1112–1118 (2000). CASPubMed Google Scholar
Smith, R. D. et al. An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics2, 513–523 (2002). CASPubMed Google Scholar
Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292, 929–934 (2001). ADSCASPubMed Google Scholar
Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A. & Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol.43, 717–731 (2002). CASPubMed Google Scholar
Guina, T. et al. Quantitative proteomic analysis of Pseudomonas aeruginosa indicates synthesis of quinolone signal in adaptation to cystic fibrosis airways. Proc. Natl Acad. Sci. USA (in the press).
Fox, A. H. et al. Paraspeckles. A novel nuclear domain. Curr. Biol.12, 13–25 (2002). CASPubMed Google Scholar