Pathogenic bacteria attach to human fibronectin through a tandem β-zipper (original) (raw)

References

  1. Peacock, S. J., Foster, T. J., Cameron, B. J. & Berendt, A. R. Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145, 3477–3486 (1999)
    Article CAS Google Scholar
  2. Ozeri, V., Rosenshine, I., Mosher, D. F., Fässler, R. & Hanski, E. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol. Microbiol. 30, 625–637 (1998)
    Article CAS Google Scholar
  3. Patti, J. M., Allen, B. L., McGavin, M. J. & Höök, M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48, 585–617 (1994)
    Article CAS Google Scholar
  4. House-Pompeo, K., Xu, Y., Joh, D., Speziale, P. & Höök, M. Conformational changes in the fibronectin binding MSCRAMMs are induced by ligand binding. J. Biol. Chem. 271, 1379–1384 (1996)
    Article CAS Google Scholar
  5. Penkett, C. J. et al. Structural and dynamical characterization of a biologically active unfolded fibronectin-binding protein from Staphylococcus aureus. Biochemistry 37, 17054–17067 (1998)
    Article CAS Google Scholar
  6. McGavin, M. J. et al. Fibronectin receptors from Streptococcus dysgalactiae and _Staphylococcus aureus_—involvement of conserved residues in ligand binding. J. Biol. Chem. 268, 23946–23953 (1993)
    CAS PubMed Google Scholar
  7. Joh, D., Speziale, P., Gurusiddappa, S., Manor, J. & Höök, M. Multiple specificities of the staphylococcal and streptococcal fibronectin-binding microbial surface components recognizing adhesive matrix molecules. Eur. J. Biochem. 258, 897–905 (1998)
    Article CAS Google Scholar
  8. Sinha, B. et al. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1 . Cell. Microbiol. 1, 101–117 (1999)
    Article CAS Google Scholar
  9. Knodler, L. A., Celli, J. & Finlay, B. B. Pathogenic trickery: Deception of host cell processes. Nature Rev. Mol. Cell Biol. 2, 578–588 (2001)
    Article CAS Google Scholar
  10. Ing, M. B., Baddour, L. M. & Bayers, S. A. in The Staphylococci in Human Disease (eds Crossley, K. B. & Archer, G. L.) 331–354 (Churchill Livingstone, New York, 1997)
    Google Scholar
  11. Greene, C. et al. Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of fnb genes. Mol. Microbiol. 17, 1143–1152 (1995)
    Article CAS Google Scholar
  12. Potts, J. R., Bright, J. R., Bolton, D., Pickford, A. R. & Campbell, I. D. Solution structure of the N-terminal F1 module pair from human fibronectin. Biochemistry 38, 8304–8312 (1999)
    Article CAS Google Scholar
  13. Jaffe, J., Natanson-Yaron, S., Caparon, M. G. & Hanski, E. Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol. Microbiol. 21, 373–384 (1996)
    Article CAS Google Scholar
  14. Penkett, C. J. et al. Identification of residues involved in the interaction of Staphylococcus aureus fibronectin-binding protein with the 4F15F1 module pair of human fibronectin using heteronuclear NMR spectroscopy. Biochemistry 39, 2887–2893 (2000)
    Article CAS Google Scholar
  15. Talay, S. R., Valentin-Weigand, P., Jerlstrom, P. G., Timmis, K. N. & Chhatwal, G. S. Fibronectin-binding protein of _Streptococcus pyogenes_—sequence of the binding domain involved in adherence of streptococci to epithelial cells. Infect. Immun. 60, 3837–3844 (1992)
    CAS PubMed PubMed Central Google Scholar
  16. Signäs, C. et al. Nucleotide sequence of the gene for a fibronectin-binding protein from _Staphylococcus aureus_—use of this peptide sequence in the synthesis of biologically-active peptides. Proc. Natl Acad. Sci. USA 86, 699–703 (1989)
    Article ADS Google Scholar
  17. Schwarz-Linek, U. et al. Binding of a peptide from a Streptococcus dysgalactiae MSCRAMM to the N-terminal F1 module pair of human fibronectin involves both modules. FEBS Lett. 497, 137–140 (2001)
    Article CAS Google Scholar
  18. Huff, S., Matsuka, Y. V., McGavin, M. J. & Ingham, K. C. Interaction of N-terminal fragments of fibronectin with synthetic and recombinant D motifs from its binding protein on Staphylococcus aureus studied using fluorescence anisotropy. J. Biol. Chem. 269, 15563–15570 (1994)
    CAS PubMed Google Scholar
  19. Massey, R. C. et al. Fibronectin-binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells. Cell. Microbiol. 3, 839–851 (2001)
    Article CAS Google Scholar
  20. Talay, S. R. et al. Co-operative binding of human fibronectin to SfbI protein triggers streptococcal invasion into respiratory epithelial cells. Cell. Microbiol. 2, 521–535 (2000)
    Article CAS Google Scholar
  21. Derrick, J. P. & Wigley, D. B. Crystal structure of a streptococcal protein-G domain bound to an Fab fragment. Nature 359, 752–754 (1992)
    Article ADS CAS Google Scholar
  22. Pickford, A., Smith, S., Staunton, D., Boyd, J. & Campbell, I. The hairpin structure of the 6F11F22F2 fragment from human fibronectin enhances gelatin binding. EMBO J. 20, 1519–1529 (2001)
    Article CAS Google Scholar
  23. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999)
    Article CAS Google Scholar
  24. Brünger, A. T. X-PLOR (Version 3.1) A System for X-ray Crystallography and NMR (Yale University, New Haven, Connecticut, 1992)
    Google Scholar
  25. Sass, H. J., Musco, G., Stahl, S. J., Wingfield, P. T. & Grzesiek, S. Solution NMR of proteins within polyacrylamide gels: Diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J. Biomol. NMR 18, 303–309 (2000)
    Article CAS Google Scholar
  26. Ottiger, M., Delaglio, F. & Bax, A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131, 373–378 (1998)
    Article ADS CAS Google Scholar
  27. Hashimoto, Y. et al. The relative orientation of the fibronectin 6F11F2 module pair: A N-15 NMR relaxation study. J. Biomol. NMR 17, 203–214 (2000)
    Article CAS Google Scholar
  28. Tjandra, N., Garrett, D. S., Gronenborn, A. M., Bax, A. & Clore, G. M. Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nature Struct. Biol. 4, 443–449 (1997)
    Article CAS Google Scholar
  29. Wishart, D. S., Sykes, B. D. & Richards, F. M. The chemical-shift index—a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651 (1992)
    Article CAS Google Scholar
  30. Talay, S. R., Valentin-Weigand, P., Timmis, K. N. & Chhatwal, G. S. Domain-structure and conserved epitopes of Sfb protein, the fibronectin-binding adhesin of Streptococcus pyogenes. Mol. Microbiol. 13, 531–539 (1994)
    Article CAS Google Scholar

Download references