Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles (original) (raw)

References

  1. Preskill, J. P. Quantum Computation Lecture Notes for Physics 219/Computer Science 219 〈http://www.theory.caltech.edu/people/preskill/ph229/〉.
  2. DiVincenzo, D. P. The physical implementation of quantum computation. Fortsch. Phys. 48, 771–783 (2000)
    Article ADS Google Scholar
  3. Bose, S., Knight, P. L., Plenio, M. B. & Vedral, V. Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158–5161 (1999)
    Article ADS CAS Google Scholar
  4. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)
    Article ADS CAS Google Scholar
  5. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)
    Article ADS CAS Google Scholar
  6. Duan, L.-M., Lukin, M., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)
    Article ADS CAS Google Scholar
  7. Clauser, J. F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D 9, 853–860 (1974)
    Article ADS CAS Google Scholar
  8. Mandel, L. Quantum effects in one-photon and two-photon interference. Rev. Mod. Phys. 71(2), S274–S282 (1999)
    Article CAS Google Scholar
  9. Briegel, H.-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1999)
    Article ADS Google Scholar
  10. Enk, S. J., Cirac, J. I. & Zoller, P. Photonic channels for quantum communication. Science 279, 205–208 (1998)
    Article ADS Google Scholar
  11. Duan, L.-M. Entangling many atomic ensembles with laser manipulation. Phys. Rev. Lett. 88, 170402–170405 (2002)
    Article ADS Google Scholar
  12. Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping (Springer, 1999)
    Book Google Scholar
  13. Kitagawa, M. & Ueda, M. Nonlinear-interferometric generation of number-phase correlated fermion states. Phys. Rev. Lett. 67, 1852–1854 (1991)
    Article ADS CAS Google Scholar
  14. Wineland, D. J., Bollinger, J. J., Itano, W. M. & Moore, F. L. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992)
    Article ADS CAS Google Scholar
  15. Kuzmich, A., Mølmer, K. & Polzik, E. S. Spin squeezing in an ensemble of atoms illuminated with squeezed light. Phys. Rev. Lett. 79, 4782–4785 (1997)
    Article ADS CAS Google Scholar
  16. Kuzmich, A., Bigelow, N. P. & Mandel, L. Atomic quantum non-demolition measurements and squeezing. Europhys. Lett. A 42, 481–486 (1998)
    Article ADS CAS Google Scholar
  17. Mølmer, K. Twin-correlations in atoms. Eur. Phys. J. D 5, 301–305 (1999)
    Article ADS Google Scholar
  18. Hald, J., Sørensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed atoms: A macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1320 (1999)
    Article ADS Google Scholar
  19. Kuzmich, A., Mandel, L. & Bigelow, N. P. Generation of spin squeezing via continuous quantum non-demolition measurements. Phys. Rev. Lett. 85, 1594–1597 (2000)
    Article ADS CAS Google Scholar
  20. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001)
    Article ADS CAS Google Scholar
  21. Duan, L.-M., Cirac, J. I. & Zoller, P. Three-dimensional theory for interaction between atomic ensembles and free-space light. Phys. Rev. A. 66, 023818 (2002)
    Article ADS Google Scholar
  22. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)
    Article ADS CAS Google Scholar
  23. Harris, S. E. & Hau, L. V. Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999)
    Article ADS CAS Google Scholar
  24. Zibrov, A. S. et al. Transporting and time reversing light via atomic coherence. Phys. Rev. Lett. 88, 103601 (2002)
    Article ADS CAS Google Scholar
  25. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, UK, 1995)
    Book Google Scholar
  26. Schori, C., Julsgaard, B., Sørensen, J. L. & Polzik, E. S. Recording quantum properties of light in a long-lived atomic spin state: Towards quantum memory. Phys. Rev. Lett. 89, 057903 (2002)
    Article ADS CAS Google Scholar
  27. Pelton, M. et al. Efficient source of single photons: A single dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002)
    Article ADS Google Scholar
  28. Alexandrov, E. B., Balabas, M. V., Pasgalev, A. S., Verkhovskii, A. K. & Yakobson, N. N. Double-resonance atomic magnetometers: from gas discharge to laser pumping. Laser Phys. 6, 244–251 (1996)
    CAS Google Scholar
  29. van der Wal, C. H. et al. Atomic memory for correlated photon states. Science, published online 22 May 2003 (doi:10.1126/science.1085946).
    Article ADS CAS Google Scholar

Download references