Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels (original) (raw)

References

  1. Clapham, D. E., Runnels, L. W. & Strübing, C. The TRP ion channel family. Nature Rev. Neurosci. 2, 387–396 (2001)
    Article CAS Google Scholar
  2. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T. D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biol. 2, 695–702 (2000)
    Article CAS PubMed Google Scholar
  3. Güler, A. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6414 (2002)
    Article PubMed Central PubMed Google Scholar
  4. Wissenbach, U., Bödding, M., Freichel, M. & Flockerzi, V. Trp12, a novel Trp related protein from kidney. FEBS Lett. 485, 127–134 (2000)
    Article CAS PubMed Google Scholar
  5. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000)
    Article CAS PubMed Central PubMed Google Scholar
  6. Nilius, B., Prenen, J., Wissenbach, U., Bödding, M. & Droogmans, G. Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and the volume-regulated anion currents in HEK-293 cells. Pflügers Arch. 443, 227–233 (2001)
    Article CAS PubMed Google Scholar
  7. Watanabe, H. et al. Heat-evoked activation of TRPV4 channels in an HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem. 277, 47044–47051 (2002)
    Article CAS PubMed Google Scholar
  8. Watanabe, H. et al. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem. 277, 13569–13577 (2002)
    Article CAS PubMed Google Scholar
  9. Seegers, H. C., Gross, R. W. & Boyle, W. A. Calcium-independent phospholipase A2-derived arachidonic acid is essential for endothelium-dependent relaxation by acetylcholine. J. Pharmacol. Exp. Ther. 302, 918–923 (2002)
    Article CAS PubMed Google Scholar
  10. Tan, J. Z., Kaley, G. & Gurtner, G. H. Nitric oxide and prostaglandins mediate vasodilation to 5,6-EET in rabbit lung. Adv. Exp. Med. Biol. 407, 561–566 (1997)
    Article CAS PubMed Google Scholar
  11. Fuloria, M., Smith, T. K. & Aschner, J. L. Role of 5,6-epoxyeicosatrienoic acid in the regulation of newborn piglet pulmonary vascular tone. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L383–L389 (2002)
    Article CAS PubMed Google Scholar
  12. Jarai, Z. et al. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc. Natl Acad. Sci. USA 96, 14136–14141 (1999)
    Article ADS CAS PubMed Central PubMed Google Scholar
  13. Voets, T. et al. Molecular determinants of permeation through the cation channel TRPV4. J. Biol. Chem. 277, 33704–33710 (2002)
    Article CAS PubMed Google Scholar
  14. Ueda, N. Endocannabinoid hydrolases. Prostaglandins Other Lipid Mediat. 68–69, 521–534 (2002)
    Article PubMed Google Scholar
  15. Fleming, I. Cytochrome P450 enzymes in vascular homeostasis. Circ. Res. 89, 753–762 (2001)
    Article CAS PubMed Google Scholar
  16. Roman, R. J. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185 (2002)
    Article CAS PubMed Google Scholar
  17. Randall, M. D. & Kendall, D. A. Endocannabinoids: A new class of vasoactive substances. Trends Pharmacol. Sci. 19, 55–58 (1998)
    Article CAS PubMed Google Scholar
  18. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999)
    Article ADS CAS PubMed Google Scholar
  19. Randall, M. D. & Kendall, D. A. Anandamide and endothelium-derived hyperpolarizing factor act via a common vasorelaxant mechanism in rat mesentery. Eur. J. Pharmacol. 346, 51–53 (1998)
    Article CAS PubMed Google Scholar
  20. Rzigalinski, B. A., Willoughby, K. A., Hoffman, S. W., Falck, J. R. & Ellis, E. F. Calcium influx factor, further evidence it is 5,6-epoxyeicosatrienoic acid. J. Biol. Chem. 274, 175–182 (1999)
    Article CAS PubMed Google Scholar
  21. Xie, Q., Zhang, Y., Zhai, C. & Bonanno, J. A. Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J. Biol. Chem. 277, 16559–16566 (2002)
    Article CAS PubMed Google Scholar
  22. Graier, W. F., Simecek, S. & Sturek, M. Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells. J. Physiol. (Lond.) 482, 259–274 (1995)
    Article CAS Google Scholar
  23. Wilson, R. I. & Nicoll, R. A. Endocannabinoid signaling in the brain. Science 296, 678–682 (2002)
    Article ADS CAS PubMed Google Scholar
  24. Suh, S. H. et al. Characterisation of explanted endothelial cells from mouse aorta: electrophysiology and Ca2+ signalling. Pflügers Arch. 438, 612–620 (1999)
    CAS PubMed Google Scholar
  25. Freichel, M. et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nature Cell Biol. 3, 121–127 (2001)
    Article CAS PubMed Google Scholar
  26. Grainger, J. & Boachie Ansah, G. Anandamide-induced relaxation of sheep coronary arteries: The role of the vascular endothelium, arachidonic acid metabolites and potassium channels. Br. J. Pharmacol. 134, 1003–1012 (2001)
    Article CAS PubMed Central PubMed Google Scholar
  27. Williams, D. A. & Fay, F. S. Intracellular calibration of the fluorescent calcium indicator Fura-2. Cell Calcium 11, 75–83 (1990)
    Article CAS PubMed Google Scholar

Download references