Mechanism of silk processing in insects and spiders (original) (raw)

References

  1. Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001)
    Article ADS CAS Google Scholar
  2. Zhou, C. Z. et al. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 28, 2413–2419 (2000)
    Article CAS Google Scholar
  3. Altman, G. H. et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23, 4131–4141 (2002)
    Article CAS Google Scholar
  4. Mita, K., Ichimura, S. & James, T. C. Highly repetitive structure and its organization of the silk fibroin gene. J. Mol. Evol. 38, 583–592 (1994)
    Article ADS CAS Google Scholar
  5. Yamada, H., Nakao, H., Takasu, Y. & Tsubouchi, K. Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mater. Sci. Eng. C 14, 41–46 (2001)
    Article Google Scholar
  6. Sofia, S., McCarthy, M. B., Gronowicz, G. & Kaplan, D. L. Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 54, 139–148 (2001)
    Article CAS Google Scholar
  7. Jin, H.-J., Fridrikh, S. V., Rutledge, G. C. & Kaplan, D. L. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3, 1233–1239 (2002)
    Article CAS Google Scholar
  8. Roseman, M. A. Hydrophilicity of polar amino-acid side-chain is markedly reduced by flanking peptide-bonds. J. Mol. Biol. 200, 513–522 (1988)
    Article CAS Google Scholar
  9. Ochi, A., Hossain, K. S., Magoshi, J. & Nemoto, N. Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. Biomacromolecules 3, 1187–1196 (2002)
    Article CAS Google Scholar
  10. Discher, D. E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002)
    Article ADS CAS Google Scholar
  11. Malstom, M. & Lindman, B. Self-assembly in aqueous block copolymer solutions. Macromolecules 25, 5440–5445 (1992)
    Article ADS Google Scholar
  12. Kwon, K. W., Park, M. J., Bae, Y. H., Kim, H. D. & Char, K. Gelation behavior of PEO-PLGA-PEO triblock copolymers in water. Polymer 43, 3353–3358 (2002)
    Article CAS Google Scholar
  13. Magoshi, J., Mizuide, M. & Magoshi, Y. Physical properties and structure of silk. VI. Conformational changes in silk fibroin induced by immersion in water at 2 to 130 °C. J. Polym. Sci. 17 (Polymer Physics Edition), 515–520 (1979)
    CAS Google Scholar
  14. Ishida, M., Asakura, T., Yoko, M. & Saito, H. Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studied by high-resolution solid-state 13C NMR spectroscopy. Macromolecules 23, 88–94 (1990)
    Article ADS CAS Google Scholar
  15. Seidel, A. et al. Regenerated spider silk: Processing, properties, and structure. Macromolecules 33, 775–780 (2000)
    Article ADS CAS Google Scholar
  16. Valluzzi, R., Szela, S., Avtges, P., Kirschner, D. & Kaplan, D. L. Methionine redox controlled crystallization of biosynthetic silk spidroin. J. Phys. Chem. B 103, 11382–11392 (1999)
    Article CAS Google Scholar
  17. Wilson, D., Valluzzi, R. & Kaplan, D. Conformational transitions in model silk peptides. Biophys. J. 78, 2690–2701 (2001)
    Article Google Scholar
  18. Shen, Y., Johnson, M. A. & Martin, D. C. Microstructural characterization of Bombyx mori silk fibers. Macromolecules 31, 8857–8864 (1998)
    Article ADS CAS Google Scholar
  19. Asakura, T., Kuzuhara, A., Tabeta, R. & Saitô, H. Conformation characterization of Bombyx mori silk fibroin in the solid state by high-frequency 13C cross polarization-magic angle spinning NMR, X-ray diffraction, and infra spectroscopy. Macromolecules 18, 1841–1845 (1985)
    Article ADS CAS Google Scholar
  20. Putthanarat, S., Stribeck, N., Fossey, S. A., Eby, R. K. & Adams, W. W. Investigation of the nanofibrils of silk fibers. Polymer 41, 7735–7747 (2000)
    Article CAS Google Scholar
  21. van Beek, J. D., Hess, S., Vollrath, F. & Meier, B. H. The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proc. Natl Acad. Sci. USA 99, 10266–10271 (2002)
    Article ADS CAS Google Scholar
  22. Perez-Rigueiro, J., Viney, C., Llorca, J. & Elices, M. Silkworm silk as an engineering material. J. Appl. Polym. Sci. 70, 2439–2447 (1998)
    Article CAS Google Scholar
  23. Poza, P., Pérez-Rigueiro, J., Elices, M. & Llorca, J. Fractographic analysis of silkworm and spider silk. Eng. Fracture Mech. 69, 1035–1048 (2002)
    Article Google Scholar
  24. Auvray, X. et al. Influence of solvent headgroup interactions on the formation of lyotropic liquid crystal phases of surfactants in water and nonaqueous protic and aprotic solvents. Langmuir 8, 2671–2679 (1992)
    Article CAS Google Scholar
  25. Lele, A. K. et al. Deformation induced hydrophobicity: Implications in spider silk formation. Chem. Eng. Sci. 56, 5793–5800 (2001)
    Article CAS Google Scholar
  26. Tanaka, T. et al. Phase separation structure in poly(vinyl alcohol) silk fibroin blend films. Polym. Int. 45, 175–184 (1998)
    Article CAS Google Scholar
  27. Knight, D. P. & Vollrath, F. Biological liquid crystal elastomers. Phil. Trans. R. Soc. Lond. B 357, 155–163 (2002)
    Article CAS Google Scholar
  28. Knight, D. P. & Vollrath, F. Liquid crystals and flow elongation in a spider's silk production line. Proc. R. Soc. Lond. B 266, 519–523 (1999)
    Article Google Scholar
  29. Viney, C. Natural silks: Archetypal supramolecular assembly of polymer fibres. Supramol. Sci. 4, 75–81 (1997)
    Article CAS Google Scholar
  30. Minoura, N., Tsukada, M. & Nagura, M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11, 430–434 (1990)
    Article CAS Google Scholar
  31. Altman, G. H. et al. Silk-based biomaterials. Biomaterials 24, 401–416 (2003)
    Article CAS Google Scholar

Download references