Mechanism of silk processing in insects and spiders (original) (raw)
References
Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature410, 541–548 (2001) ArticleADSCAS Google Scholar
Zhou, C. Z. et al. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res.28, 2413–2419 (2000) ArticleCAS Google Scholar
Altman, G. H. et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials23, 4131–4141 (2002) ArticleCAS Google Scholar
Mita, K., Ichimura, S. & James, T. C. Highly repetitive structure and its organization of the silk fibroin gene. J. Mol. Evol.38, 583–592 (1994) ArticleADSCAS Google Scholar
Yamada, H., Nakao, H., Takasu, Y. & Tsubouchi, K. Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mater. Sci. Eng. C14, 41–46 (2001) Article Google Scholar
Sofia, S., McCarthy, M. B., Gronowicz, G. & Kaplan, D. L. Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res.54, 139–148 (2001) ArticleCAS Google Scholar
Jin, H.-J., Fridrikh, S. V., Rutledge, G. C. & Kaplan, D. L. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules3, 1233–1239 (2002) ArticleCAS Google Scholar
Roseman, M. A. Hydrophilicity of polar amino-acid side-chain is markedly reduced by flanking peptide-bonds. J. Mol. Biol.200, 513–522 (1988) ArticleCAS Google Scholar
Ochi, A., Hossain, K. S., Magoshi, J. & Nemoto, N. Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. Biomacromolecules3, 1187–1196 (2002) ArticleCAS Google Scholar
Malstom, M. & Lindman, B. Self-assembly in aqueous block copolymer solutions. Macromolecules25, 5440–5445 (1992) ArticleADS Google Scholar
Kwon, K. W., Park, M. J., Bae, Y. H., Kim, H. D. & Char, K. Gelation behavior of PEO-PLGA-PEO triblock copolymers in water. Polymer43, 3353–3358 (2002) ArticleCAS Google Scholar
Magoshi, J., Mizuide, M. & Magoshi, Y. Physical properties and structure of silk. VI. Conformational changes in silk fibroin induced by immersion in water at 2 to 130 °C. J. Polym. Sci.17 (Polymer Physics Edition), 515–520 (1979) CAS Google Scholar
Ishida, M., Asakura, T., Yoko, M. & Saito, H. Solvent- and mechanical-treatment-induced conformational transition of silk fibroins studied by high-resolution solid-state 13C NMR spectroscopy. Macromolecules23, 88–94 (1990) ArticleADSCAS Google Scholar
Seidel, A. et al. Regenerated spider silk: Processing, properties, and structure. Macromolecules33, 775–780 (2000) ArticleADSCAS Google Scholar
Valluzzi, R., Szela, S., Avtges, P., Kirschner, D. & Kaplan, D. L. Methionine redox controlled crystallization of biosynthetic silk spidroin. J. Phys. Chem. B103, 11382–11392 (1999) ArticleCAS Google Scholar
Wilson, D., Valluzzi, R. & Kaplan, D. Conformational transitions in model silk peptides. Biophys. J.78, 2690–2701 (2001) Article Google Scholar
Shen, Y., Johnson, M. A. & Martin, D. C. Microstructural characterization of Bombyx mori silk fibers. Macromolecules31, 8857–8864 (1998) ArticleADSCAS Google Scholar
Asakura, T., Kuzuhara, A., Tabeta, R. & Saitô, H. Conformation characterization of Bombyx mori silk fibroin in the solid state by high-frequency 13C cross polarization-magic angle spinning NMR, X-ray diffraction, and infra spectroscopy. Macromolecules18, 1841–1845 (1985) ArticleADSCAS Google Scholar
Putthanarat, S., Stribeck, N., Fossey, S. A., Eby, R. K. & Adams, W. W. Investigation of the nanofibrils of silk fibers. Polymer41, 7735–7747 (2000) ArticleCAS Google Scholar
van Beek, J. D., Hess, S., Vollrath, F. & Meier, B. H. The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proc. Natl Acad. Sci. USA99, 10266–10271 (2002) ArticleADSCAS Google Scholar
Perez-Rigueiro, J., Viney, C., Llorca, J. & Elices, M. Silkworm silk as an engineering material. J. Appl. Polym. Sci.70, 2439–2447 (1998) ArticleCAS Google Scholar
Poza, P., Pérez-Rigueiro, J., Elices, M. & Llorca, J. Fractographic analysis of silkworm and spider silk. Eng. Fracture Mech.69, 1035–1048 (2002) Article Google Scholar
Auvray, X. et al. Influence of solvent headgroup interactions on the formation of lyotropic liquid crystal phases of surfactants in water and nonaqueous protic and aprotic solvents. Langmuir8, 2671–2679 (1992) ArticleCAS Google Scholar
Lele, A. K. et al. Deformation induced hydrophobicity: Implications in spider silk formation. Chem. Eng. Sci.56, 5793–5800 (2001) ArticleCAS Google Scholar
Tanaka, T. et al. Phase separation structure in poly(vinyl alcohol) silk fibroin blend films. Polym. Int.45, 175–184 (1998) ArticleCAS Google Scholar
Knight, D. P. & Vollrath, F. Biological liquid crystal elastomers. Phil. Trans. R. Soc. Lond. B357, 155–163 (2002) ArticleCAS Google Scholar
Knight, D. P. & Vollrath, F. Liquid crystals and flow elongation in a spider's silk production line. Proc. R. Soc. Lond. B266, 519–523 (1999) Article Google Scholar
Viney, C. Natural silks: Archetypal supramolecular assembly of polymer fibres. Supramol. Sci.4, 75–81 (1997) ArticleCAS Google Scholar
Minoura, N., Tsukada, M. & Nagura, M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials11, 430–434 (1990) ArticleCAS Google Scholar
Altman, G. H. et al. Silk-based biomaterials. Biomaterials24, 401–416 (2003) ArticleCAS Google Scholar