Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases (original) (raw)
Parniske, M. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr. Opin. Plant Biol.3, 320–328 (2000) ArticleCAS Google Scholar
Gadkar, V., David-Schwartz, R., Kunik, T. & Kapulnik, Y. Arbuscular mycorrhical fungal colonization. Factors involved in host recognition. Plant Physiol.127, 1493–1499 (2001) ArticleCAS Google Scholar
Szczyglowski, K. & Amyot, L. Symbiosis, inventiveness by recruitment? Plant Physiol.131, 935–940 (2003) ArticleCAS Google Scholar
Duc, G., Trouvelot, A., Gianinazzi-Pearson, V. & Gianinazzi, S. First report of non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L) and fababean (Vicia faba L). Plant Sci.60, 215–222 (1989) Article Google Scholar
Wegel, E., Schauser, L., Sandal, N., Stougaard, J. & Parniske, M. Mycorrhiza mutants of Lotus japonicus define genetically independent steps during symbiotic infection. Mol. Plant Microbe Interact.11, 933–936 (1998) ArticleCAS Google Scholar
Stougaard, J. Genetics and genomics of root symbiosis. Curr. Opin. Plant Biol.4, 328–335 (2001) ArticleCAS Google Scholar
Stracke, S. et al. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature417, 959–962 (2002) ArticleADSCAS Google Scholar
Endre, G. et al. A receptor kinase gene regulating symbiotic nodule development. Nature417, 962–966 (2002) ArticleADSCAS Google Scholar
Kosuta, S. et al. A diffusable factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol.131, 952–962 (2003) ArticleCAS Google Scholar
Lerouge, P. et al. Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acetylated glucosamine oligosaccharide signal. Nature344, 781–784 (1990) ArticleADSCAS Google Scholar
Spaink, H. P. et al. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature354, 125–130 (1991) ArticleADSCAS Google Scholar
Truchet, G. et al. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature351, 670–673 (1991) ArticleADSCAS Google Scholar
Lopez-Lara, I. M. et al. Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol. Microbiol.15, 627–638 (1995) ArticleCAS Google Scholar
Niwa, S. et al. Responses of a model legume Lotus japonicus to lipochitin oligosaccharide nodulation factors purified from Mesorhizobium loti JRL501. Mol. Plant Microbe Interact.14, 848–856 (2001) ArticleCAS Google Scholar
Kistner, C. & Parniske, M. Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci.7, 511–518 (2002) ArticleCAS Google Scholar
Pacios-Bras, C. et al. A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase NodZ and the acetyl transferase NolL in Rhizobium leguminosarum. Mol. Plant Microbe Interact.13, 475–479 (2000) ArticleCAS Google Scholar
Ehrhardt, D. W., Atkinson, E. M. & Long, S. R. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science256, 998–1000 (1992) ArticleADSCAS Google Scholar
Felle, H. H., Kondorosi, E., Kondorosi, A. & Schultze, M. The role of ion fluxes in Nod factor signalling in Medicago sativa. Plant J.13, 455–463 (1998) ArticleCAS Google Scholar
Schauser, L. et al. Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol. Gen. Genet.259, 414–423 (1998) ArticleCAS Google Scholar
Szczyglowski, K. et al. Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol. Plant Microbe Interact.11, 684–697 (1998) ArticleCAS Google Scholar
Madsen, E. B. et al. A receptor-kinase gene of the LysM type is involved in perception of rhizobial signals. Nature425, 637–640 (2003) ArticleADSCAS Google Scholar
Felle, H. H., Kondorosi, E., Kondorosi, A. & Schultze, M. Nod signal-induced plasma membrane potential changes in alfalfa root hairs are differentially sensitive to structural modifications of the lipochitoligosaccharide. Plant J.7, 939–947 (1995) ArticleCAS Google Scholar
Shaw, S. L. & Long, S. R. Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol.131, 976–984 (2003) ArticleCAS Google Scholar
Felle, H. H., Kondorosi, E., Kondorosi, A. & Schultze, M. How alfalfa root hairs discriminate between Nod factors and oligochitin elicitors. Plant Physiol.124, 1373–1380 (2000) ArticleCAS Google Scholar
Govers, F. et al. Characterization of the pea ENOD12B gene and expression analyses of the two ENOD12 genes in nodule, stem and flower tissue. Mol. Gen. Genet.228, 160–166 (1991) ArticleCAS Google Scholar
Colebatch, G. et al. Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Mol. Plant Microbe Interact.15, 411–420 (2002) ArticleCAS Google Scholar
Schauser, L., Roussis, A., Stiller, J. & Stougaard, J. A plant regulator controlling development of symbiotic root nodules. Nature402, 191–195 (1999) ArticleADSCAS Google Scholar
Sandal, N. et al. A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics161, 1673–1683 (2002) CASPubMedPubMed Central Google Scholar
Stougaard, J. Agrobacterium rhizogenes as a vector for transforming higher plants. Methods Mol. Biol.49, 49–61 (1995) CASPubMed Google Scholar
Joris, B. et al. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol. Lett.70, 257–264 (1992) ArticleCAS Google Scholar
Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell109, 275–282 (2002) ArticleCAS Google Scholar
Schenk, P. W. & Snaar-Jagalska, B. E. Signal perception and transduction: the role of protein kinases. Biochim. Biophys. Acta1449, 1–24 (1999) ArticleCAS Google Scholar
Pontig, C. P. et al. Eukaryotic signalling domain homologous in Archaea and Bacteria. Ancient ancestry and horizontal gene transfer. J. Mol. Biol.289, 729–745 (1999) Article Google Scholar
Webb, J. et al. Mesorhizobium loti increases root-specific expression of a calcium-binding protein homologue identified by promoter tagging in Lotus japonicus. Mol. Plant Microbe Interact.13, 606–616 (2000) ArticleCAS Google Scholar
Schlaman, H. R. et al. Suppression of nodulation gene expression in bacteroids of Rhizobium leguminosarum biovar viceae. J. Bacteriol.173, 4277–4287 (1991) ArticleCAS Google Scholar
Timmers, A. C. J., Auriac, M.-C., de Billy, F. & Truchet, G. Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. Development125, 339–349 (1998) CASPubMed Google Scholar
Bateman, A. & Bycroft, M. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J. Mol. Biol.299, 1113–1119 (2000) ArticleCAS Google Scholar
Steen, A. et al. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J. Biol. Chem.278, 23874–23881 (2003) ArticleCAS Google Scholar
Amon, P., Haas, E. & Sumper, M. The sex-inducing pheromone and wounding trigger the same set of genes in the multicellular green alga Volvox. Plant Cell10, 781–789 (1998) ArticleCAS Google Scholar
Butler, A. R., O'Donnell, R. W., Martin, V. J., Gooday, G. W. & Stark, M. J. Kluyveromyces lactis toxin has an essential chitinase activity. Eur. J. Biochem.199, 483–488 (1991) ArticleCAS Google Scholar
Gressent, F. et al. Ligand specificity of a high-affinity binding site for lipo-chitooligosaccharidic Nod-factors in Medicago cell suspension cultures. Proc. Natl Acad. Sci. USA96, 4704–4709 (1999) ArticleADSCAS Google Scholar
Walker, S. A., Viprey, V. & Downie, J. A. Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proc. Natl Acad. Sci. USA97, 13413–13418 (2000) ArticleADSCAS Google Scholar
Amor, B. B. et al. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J.34, 495–506 (2003) Article Google Scholar
Handberg, K. & Stougaard, J. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J.2, 487–496 (1992) Article Google Scholar
Asamizu, E. et al. Structural analysis of a Lotus japonicus genome. IV. Sequence features and mapping of seventy-three TAC clones which cover the 7.5-Mb regions of the genome. DNA Res.10, 115–122 (2003) ArticleCAS Google Scholar
Gerard, C. J., Andrejka, L. M. & Macina, R. A. Mitochondrial ATP synthase 6 as an endogenous control in the quantitative RT-PCR analysis of clinical cancer samples. Mol. Diagn.5, 39–46 (2000) ArticleCAS Google Scholar
Kosugi, S., Ohashi, Y., Nakajima, K. & Arai, Y. An improved assay for β-glucuronidase in transformed cells: Methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci.70, 133–140 (1990) ArticleCAS Google Scholar