Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis (original) (raw)

References

  1. St Johnston, D. & Nüsslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 (1992)
    Article CAS PubMed Google Scholar
  2. Lyczak, R., Gomes, J. & Bowerman, B. Heads or tails: cell polarity and axis formation in the early Caenorhabditis elegans embryo. Dev. Cell 3, 157–166 (2002)
    Article CAS PubMed Google Scholar
  3. Jürgens, G. Apical–basal pattern formation in Arabidopsis embryogenesis. EMBO J. 20, 3609–3616 (2001)
    Article PubMed PubMed Central Google Scholar
  4. Mayer, U., Torres Ruiz, R. A., Berleth, T., Miséra, S. & Jürgens, G. Mutations affecting body organization in the Arabidopsis embryo. Nature 353, 402–407 (1991)
    Article ADS Google Scholar
  5. Hamann, T., Mayer, U. & Jürgens, G. The auxin-insensitive bodenlos mutation affects primary root formation and apical–basal patterning in the Arabidopsis embryo. Development 126, 1387–1395 (1999)
    CAS PubMed Google Scholar
  6. Hardtke, C. & Berleth, T. The Arabidopsis gene MONOPTEROS encodes a transription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405–1411 (1998)
    Article CAS PubMed PubMed Central Google Scholar
  7. Hamann, T., Benkova, E., Bäurle, I., Kientz, M. & Jürgens, G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 16, 1610–1615 (2002)
    Article CAS PubMed PubMed Central Google Scholar
  8. Steinmann, T. et al. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF-GEF. Science 286, 316–318 (1999)
    Article CAS PubMed Google Scholar
  9. Geldner, N. et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230 (2003)
    Article CAS PubMed Google Scholar
  10. Liu, C., Xu, Z. & Chua, N. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5, 621–630 (1993)
    Article CAS PubMed PubMed Central Google Scholar
  11. Hadfi, K., Speth, V. & Neuhaus, G. Auxin-induced developmental patterns in Brassica juncea embryos. Development 125, 879–887 (1998)
    CAS PubMed Google Scholar
  12. Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999)
    Article CAS PubMed Google Scholar
  13. Friml, J. et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661–673 (2000)
    Article Google Scholar
  14. Fischer-Iglesias, C., Sundberg, B., Neuhaus, G. & Jones, A. Auxin distribution and transport during embryonic pattern formation in wheat. Plant J. 26, 115–129 (2001)
    Article CAS PubMed Google Scholar
  15. Ribnicky, D., Cohen, J., Hu, W. & Cooke, T. An auxin surge following fertilization in carrots: a mechanism for regulating plant totipotency. Planta 214, 505–509 (2002)
    Article CAS PubMed Google Scholar
  16. Friml, J. Auxin transport—shaping the plant. Curr. Opin. Plant Biol. 6, 7–12 (2003)
    Article CAS PubMed Google Scholar
  17. Rubery, P. & Sheldrake, A. Carrier-mediated auxin transport. Planta 118, 101–121 (1974)
    Article CAS PubMed Google Scholar
  18. Raven, J. Transport of indolacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol. 74, 163–172 (1975)
    Article CAS Google Scholar
  19. Friml, J. & Palme, K. Polar auxin transport—old questions and new concepts? Plant Mol. Biol. 49, 273–284 (2002)
    Article CAS PubMed Google Scholar
  20. Okada, K., Ueda, J., Komaki, M., Bell, C. & Shimura, Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3, 677–684 (1991)
    Article CAS PubMed PubMed Central Google Scholar
  21. Rashotte, A., Brady, S., Reed, R., Ante, S. & Muday, G. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 122, 481–490 (2000)
    Article CAS PubMed PubMed Central Google Scholar
  22. Friml, J., Wisniewska, J., Benková, E., Mendgen, K. & Palme, K. Lateral relocation of auxin efflux regulator AtPIN3 mediates tropism in Arabidopsis. Nature 415, 806–809 (2002)
    Article ADS PubMed Google Scholar
  23. Ottenschläger, I. et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA 100, 2987–2991 (2003)
    Article ADS PubMed PubMed Central Google Scholar
  24. Yamaizumi, M., Mekada, E., Uchida, T. & Okada, Y. One molecule of Diphteria Toxin fragment A introduced into a cell can kill the cell. Cell 15, 245–250 (1978)
    Article CAS PubMed Google Scholar
  25. Haseloff, J. GFP variants for multispectral imaging of living cells. Methods Cell Biol. 58, 139–151 (1999)
    Article CAS PubMed Google Scholar
  26. Weijers, D., Geldner, N., Offringa, R. & Jürgens, G. Early paternal gene activity in Arabidopsis. Nature 414, 709–710 (2001)
    Article ADS CAS PubMed Google Scholar
  27. Weijers, D. Hormonal Regulation of Pattern Formation in the Arabidopsis Embryo. Thesis, Univ. Leiden (2002)
    Google Scholar
  28. Caruso, J., Pence, V. & Leverone, L. in Plant Hormones: Physiology, Biochemistry and Molecular Biology (ed. Davies, P.) 43–447 (Kluwer Academic, The Netherlands, 1995)
    Google Scholar
  29. Delbarre, A., Muller, P., Imhoff, V. & Guern, J. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198, 532–541 (1996)
    Article CAS PubMed Google Scholar
  30. Sundaresan, V. et al. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 14, 1797–1810 (1995)
    Article Google Scholar
  31. Mayer, U., Büttner, G. & Jürgens, G. Apical–basal pattern formation in the Arabidopsis embryo: Studies on the role of the gnom gene. Development 117, 149–162 (1993)
    Google Scholar
  32. Steeves, T. & Sussex, I. Patterns in Plant Development (Cambridge Univ. Press, Cambridge, 1989)
    Book Google Scholar
  33. Teleman, A., Strigini, M. & Cohen, S. Shaping morphogen gradients. Cell 105, 559–562 (2001)
    Article CAS PubMed Google Scholar
  34. Tabata, T. Genetics of morphogen gradients. Nature Rev. Genet. 2, 620–630 (2001)
    Article ADS CAS PubMed Google Scholar
  35. Ulmasov, T., Murfett, J., Hagen, G. & Guilfoyle, T. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963–1971 (1997)
    Article CAS PubMed PubMed Central Google Scholar
  36. Braselton, J., Wilkinson, M. & Clulow, S. Feulgen staining of intact plant tissues for confocal microscopy. Biotechnol. Histochem. 71, 84–87 (1996)
    Article CAS Google Scholar
  37. Friml, J., Benkova, E., Mayer, U., Palme, K. & Muster, G. Automated whole mount localisation techniques for plant seedlings. Plant J. 34, 115–124 (2003)
    Article CAS PubMed Google Scholar
  38. Gälweiler, L. et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230 (1998)
    Article ADS PubMed Google Scholar
  39. Moctezuma, E. Changes in auxin patterns in developing gynophores of the peanut plant (Arachis hypogaea L.). Ann. Bot. 83, 235–242 (1999)
    Article CAS PubMed Google Scholar

Download references