Crystal structure of a zinc-finger–RNA complex reveals two modes of molecular recognition (original) (raw)

References

  1. Clamp, M. et al. Ensembl 2002: accommodating comparative genomics. Nucleic Acids Res. 31, 38–42 (2003)
    Article CAS Google Scholar
  2. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002)
    Article CAS Google Scholar
  3. Miller, J., McLachlan, A. D. & Klug, A. Repetitive zinc-binding domains in the protein transcriptional factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1615 (1985)
    Article CAS Google Scholar
  4. Sakonju, S. & Brown, D. D. Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell 31, 395–405 (1982)
    Article CAS Google Scholar
  5. Engelke, D., Ng, S.-Y., Shastry, B. & Roeder, R. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19, 717–728 (1980)
    Article CAS Google Scholar
  6. Picard, B. & Wegnez, M. Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA–protein complex. Proc. Natl Acad. Sci. USA 76, 241–245 (1979)
    Article ADS CAS Google Scholar
  7. Pelham, H. & Brown, D. A specific transcription factor that can bind to either the 5S RNA gene or 5S RNA. Proc. Natl Acad. Sci. USA 77, 4170–4174 (1980)
    Article ADS CAS Google Scholar
  8. Bogenhagen, D. F. & Sands, M. S. Binding of TFIIIA to derivatives of 5S RNA containing sequence substitutions or deletions defines a minimal TFIIIA binding site. Nucleic Acids Res. 20, 2639–2645 (1992)
    Article CAS Google Scholar
  9. Theunissen, O., Rudt, F., Guddat, U., Mentzel, H. & Pieler, T. RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell 71, 679–690 (1992)
    Article CAS Google Scholar
  10. Nagai, K. et al. Structure and assembly of the spliceosomal snRNPs. Biochem. Soc. Trans. 29, 15–26 (2001)
    Article CAS Google Scholar
  11. Finerty, P. J. & Bass, B. L. A Xenopus zinc finger protein that specifically binds dsRNA and RNA–DNA hybrids. J. Mol. Biol. 271, 195–208 (1997)
    Article CAS Google Scholar
  12. Mendez-Vidal, C., Wilhelm, M. T., Hellborg, F., Qian, W. & Wiman, K. G. The p53-induced mouse zinc finger protein wig-1 binds double-stranded RNA with high affinity. Nucleic Acids Res. 30, 1991–1996 (2002)
    Article CAS Google Scholar
  13. Ladomery, M., Sommerville, J., Woolner, S., Slight, J. & Hastie, N. Expression in Xenopus oocytes shows that WT1 binds transcriptions in vivo, with a central role for zinc finger one. J. Cell Sci. 116, 1539–1549 (2003)
    Article CAS Google Scholar
  14. Wolfe, S. A., Nekludova, L. & Pabo, C. O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000)
    Article CAS Google Scholar
  15. Searles, M. A., Lu, D. & Klug, A. The role of the central zinc fingers of transcription factor IIIA in binding to 5S RNA. J. Mol. Biol. 301, 47–60 (2000)
    Article CAS Google Scholar
  16. Clemens, K. R. et al. Molecular basis for specific recognition of both RNA and DNA by a zinc finger protein. Science 260, 530–533 (1993)
    Article ADS CAS Google Scholar
  17. McBryant, S. J. et al. Interaction of the RNA binding fingers of Xenopus transcription factor IIIA with specific regions of 5S ribosomal RNA. J. Mol. Biol. 248, 44–57 (1995)
    Article CAS Google Scholar
  18. Setzer, D. R., Menezes, S. R., del Rio, S., Hung, V. S. & Subramanyan, G. Functional interactions between the zinc fingers of Xenopus transcription factor IIIA during 5S rRNA binding. RNA 2, 1254–1269 (1996)
    CAS Google Scholar
  19. Friesen, W. J. & Darby, M. K. Phage display of RNA binding zinc fingers from transcription factor IIIA. J. Biol. Chem. 272, 10994–10997 (1997)
    Article CAS Google Scholar
  20. Theunissen, O., Rudt, F. & Pieler, T. Structural determinants in 5S RNA and TFIIIA for 7S RNP formation. Eur. J. Biochem. 258, 758–767 (1998)
    Article CAS Google Scholar
  21. Nolte, R. T., Conlin, R. M., Harrison, S. C. & Brown, R. S. Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. Proc. Natl Acad. Sci. USA 95, 2938–2943 (1998)
    Article ADS CAS Google Scholar
  22. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000)
    Article ADS CAS Google Scholar
  23. Wimberley, B., Varani, G. & Tinoco, I. The conformation of loop E in eukaryotic 5S ribosomal RNA. Biochemistry 32, 1078–1087 (1993)
    Article Google Scholar
  24. Correll, C. C. et al. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc. Natl Acad. Sci. USA 95, 13436–13441 (1998)
    Article ADS CAS Google Scholar
  25. Morgan, B. et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 16, 2004–2013 (1997)
    Article CAS Google Scholar
  26. Collaborative Computational Project 4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
    Article Google Scholar
  27. Sheldrick, G. M. & Gould, R. O. Structure solution by iterative peaklist optimization and tangent expansion in space group P1. Acta Crystallogr. B 51, 423–431 (1995)
    Article Google Scholar
  28. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997)
    Article CAS Google Scholar
  29. Jones, T. A., Zou, J-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  30. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article CAS Google Scholar

Download references