Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2 (original) (raw)

References

  1. Krupnick, J. G. & Benovic, J. L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289–319 (1998)
    Article CAS Google Scholar
  2. Lefkowitz, R. J., Pitcher, J., Krueger, K. & Daaka, Y. Mechanisms of β-adrenergic receptor desensitization and resensitization. Adv. Pharmacol. 42, 416–420 (1998)
    Article CAS Google Scholar
  3. Jaber, M. et al. Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proc. Natl Acad. Sci. USA 93, 12974–12979 (1996)
    Article ADS CAS Google Scholar
  4. Gros, R., Benovic, J. L., Tan, C. M. & Feldman, R. D. G-protein-coupled receptor kinase activity is increased in hypertension. J. Clin. Invest. 99, 2087–2093 (1997)
    Article CAS Google Scholar
  5. Ungerer, M., Böhm, M., Elce, J. S., Erdmann, E. & Lohse, M. J. Altered expression of β-adrenergic receptor kinase and β2-adrenergic receptors in the failing human heart. Circulation 87, 454–463 (1993)
    Article CAS Google Scholar
  6. Yeung, K. et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401, 173–177 (1999)
    Article ADS CAS Google Scholar
  7. Yeung, K. et al. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol. Cell. Biol. 20, 3079–3085 (2000)
    Article CAS Google Scholar
  8. Corbit, K. C. et al. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J. Biol. Chem. 278, 13061–13068 (2003)
    Article CAS Google Scholar
  9. Slupsky, J. R. et al. Binding of Gβγ subunits to cRaf1 downregulates G-protein-coupled receptor signalling. Curr. Biol. 9, 971–974 (1999)
    Article CAS Google Scholar
  10. Diviani, D. et al. Effect of different G protein-coupled receptor kinases on phosphorylation and desensitization of the α1B-adrenergic receptor. J. Biol. Chem. 271, 5059–5058 (1996)
    Article Google Scholar
  11. Dicker, F., Quitterer, U., Winstel, R., Honold, K. & Lohse, M. J. Phosphorylation-independent inhibition of parathyroid hormone receptor signaling by G protein-coupled receptor kinases. Proc. Natl Acad. Sci. USA 96, 5476–5481 (1999)
    Article ADS CAS Google Scholar
  12. Lohse, M. J., Benovic, J. L., Caron, M. G. & Lefkowitz, R. J. Multiple pathways of rapid β2-adrenergic receptor desensitization. Delineation with specific inhibitors. J. Biol. Chem. 265, 3202–3211 (1990)
    CAS PubMed Google Scholar
  13. Pitcher, J. A. et al. Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science 257, 1264–1267 (1992)
    Article ADS CAS Google Scholar
  14. Krasel, C. et al. Phosphorylation of GRK2 by protein kinase C abolishes its inhibition by calmodulin. J. Biol. Chem. 276, 1911–1915 (2001)
    Article CAS Google Scholar
  15. Eichmann, T. et al. The amino-terminal domain of G-protein-coupled receptor kinase 2 is a regulatory Gβγ binding site. J. Biol. Chem. 278, 8052–8057 (2003)
    Article CAS Google Scholar
  16. Yu, Q. M. et al. The amino terminus with a conserved glutamic acid of G protein-coupled receptor kinases is indispensable for their ability to phosphorylate photoactivated rhodopsin. J. Neurochem. 73, 1222–1227 (1999)
    Article CAS Google Scholar
  17. Maudsley, S. et al. The β2-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J. Biol. Chem. 275, 9572–9580 (2000)
    Article CAS Google Scholar
  18. Hasuwa, H., Kaseda, K., Einarsdottir, T. & Okabe, M. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett. 532, 227–230 (2002)
    Article CAS Google Scholar
  19. Kallal, L., Gagnon, A. W., Penn, R. B. & Benovic, J. L. Visualization of agonist-induced sequestration and down-regulation of a green fluorescent protein-tagged β2-adrenergic receptor. J. Biol. Chem. 273, 322–328 (1998)
    Article CAS Google Scholar
  20. Mason, C. S. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137–2148 (1999)
    Article CAS Google Scholar
  21. AbdAlla, S., Lother, H. & Quitterer, U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407, 94–98 (2000)
    Article ADS CAS Google Scholar
  22. AbdAlla, S., Lother, H., el Massiery, A. & Quitterer, U. Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nature Med. 7, 1003–1009 (2001)
    Article CAS Google Scholar
  23. Darman, R. B. & Forbush, B. A regulatory locus of phosphorylation in the N terminus of the Na-K-Cl cotransporter, NKCCl. J. Biol. Chem. 277, 37542–37550 (2002)
    Article CAS Google Scholar
  24. AbdAlla, S., Lother, H., Abdel-tawab, A. M. & Quitterer, U. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem. 276, 39721–39726 (2001)
    Article CAS Google Scholar
  25. Ritter, O. et al. AT2 receptor activation regulates myocardial eNOS expression via the calcineurin-NFAT pathway. FASEB J. 17, 283–285 (2003)
    Article CAS Google Scholar
  26. Wu, J. C., Tsai, R. Y. & Chung, T. H. Role of catenins in the development of gap junctions in rat cardiomyocytes. J. Cell. Biochem. 88, 823–835 (2003)
    Article CAS Google Scholar
  27. Dunigan, C. D., Curran, P. K. & Fishman, P. H. Detection of β-adrenergic receptors by radioligand binding. Methods Mol. Biol. 126, 329–343 (2000)
    CAS PubMed Google Scholar

Download references