Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2 (original) (raw)
References
Krupnick, J. G. & Benovic, J. L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol.38, 289–319 (1998) ArticleCAS Google Scholar
Lefkowitz, R. J., Pitcher, J., Krueger, K. & Daaka, Y. Mechanisms of β-adrenergic receptor desensitization and resensitization. Adv. Pharmacol.42, 416–420 (1998) ArticleCAS Google Scholar
Jaber, M. et al. Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proc. Natl Acad. Sci. USA93, 12974–12979 (1996) ArticleADSCAS Google Scholar
Gros, R., Benovic, J. L., Tan, C. M. & Feldman, R. D. G-protein-coupled receptor kinase activity is increased in hypertension. J. Clin. Invest.99, 2087–2093 (1997) ArticleCAS Google Scholar
Ungerer, M., Böhm, M., Elce, J. S., Erdmann, E. & Lohse, M. J. Altered expression of β-adrenergic receptor kinase and β2-adrenergic receptors in the failing human heart. Circulation87, 454–463 (1993) ArticleCAS Google Scholar
Yeung, K. et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature401, 173–177 (1999) ArticleADSCAS Google Scholar
Yeung, K. et al. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol. Cell. Biol.20, 3079–3085 (2000) ArticleCAS Google Scholar
Corbit, K. C. et al. Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein. J. Biol. Chem.278, 13061–13068 (2003) ArticleCAS Google Scholar
Slupsky, J. R. et al. Binding of Gβγ subunits to cRaf1 downregulates G-protein-coupled receptor signalling. Curr. Biol.9, 971–974 (1999) ArticleCAS Google Scholar
Diviani, D. et al. Effect of different G protein-coupled receptor kinases on phosphorylation and desensitization of the α1B-adrenergic receptor. J. Biol. Chem.271, 5059–5058 (1996) Article Google Scholar
Dicker, F., Quitterer, U., Winstel, R., Honold, K. & Lohse, M. J. Phosphorylation-independent inhibition of parathyroid hormone receptor signaling by G protein-coupled receptor kinases. Proc. Natl Acad. Sci. USA96, 5476–5481 (1999) ArticleADSCAS Google Scholar
Lohse, M. J., Benovic, J. L., Caron, M. G. & Lefkowitz, R. J. Multiple pathways of rapid β2-adrenergic receptor desensitization. Delineation with specific inhibitors. J. Biol. Chem.265, 3202–3211 (1990) CASPubMed Google Scholar
Pitcher, J. A. et al. Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science257, 1264–1267 (1992) ArticleADSCAS Google Scholar
Krasel, C. et al. Phosphorylation of GRK2 by protein kinase C abolishes its inhibition by calmodulin. J. Biol. Chem.276, 1911–1915 (2001) ArticleCAS Google Scholar
Eichmann, T. et al. The amino-terminal domain of G-protein-coupled receptor kinase 2 is a regulatory Gβγ binding site. J. Biol. Chem.278, 8052–8057 (2003) ArticleCAS Google Scholar
Yu, Q. M. et al. The amino terminus with a conserved glutamic acid of G protein-coupled receptor kinases is indispensable for their ability to phosphorylate photoactivated rhodopsin. J. Neurochem.73, 1222–1227 (1999) ArticleCAS Google Scholar
Maudsley, S. et al. The β2-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J. Biol. Chem.275, 9572–9580 (2000) ArticleCAS Google Scholar
Hasuwa, H., Kaseda, K., Einarsdottir, T. & Okabe, M. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett.532, 227–230 (2002) ArticleCAS Google Scholar
Kallal, L., Gagnon, A. W., Penn, R. B. & Benovic, J. L. Visualization of agonist-induced sequestration and down-regulation of a green fluorescent protein-tagged β2-adrenergic receptor. J. Biol. Chem.273, 322–328 (1998) ArticleCAS Google Scholar
Mason, C. S. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J.18, 2137–2148 (1999) ArticleCAS Google Scholar
AbdAlla, S., Lother, H. & Quitterer, U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature407, 94–98 (2000) ArticleADSCAS Google Scholar
AbdAlla, S., Lother, H., el Massiery, A. & Quitterer, U. Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nature Med.7, 1003–1009 (2001) ArticleCAS Google Scholar
Darman, R. B. & Forbush, B. A regulatory locus of phosphorylation in the N terminus of the Na-K-Cl cotransporter, NKCCl. J. Biol. Chem.277, 37542–37550 (2002) ArticleCAS Google Scholar
AbdAlla, S., Lother, H., Abdel-tawab, A. M. & Quitterer, U. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem.276, 39721–39726 (2001) ArticleCAS Google Scholar
Ritter, O. et al. AT2 receptor activation regulates myocardial eNOS expression via the calcineurin-NFAT pathway. FASEB J.17, 283–285 (2003) ArticleCAS Google Scholar
Wu, J. C., Tsai, R. Y. & Chung, T. H. Role of catenins in the development of gap junctions in rat cardiomyocytes. J. Cell. Biochem.88, 823–835 (2003) ArticleCAS Google Scholar
Dunigan, C. D., Curran, P. K. & Fishman, P. H. Detection of β-adrenergic receptors by radioligand binding. Methods Mol. Biol.126, 329–343 (2000) CASPubMed Google Scholar