Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2 (original) (raw)

Nature volume 427, pages 537–541 (2004)Cite this article

Abstract

Coumarin derivatives such as warfarin represent the therapy of choice for the long-term treatment and prevention of thromboembolic events. Coumarins target blood coagulation by inhibiting the vitamin K epoxide reductase multiprotein complex (VKOR)1. This complex recycles vitamin K 2,3-epoxide to vitamin K hydroquinone, a cofactor that is essential for the post-translational γ-carboxylation of several blood coagulation factors2,3. Despite extensive efforts, the components of the VKOR complex have not been identified4,5,6,7,8. The complex has been proposed to be involved in two heritable human diseases: combined deficiency of vitamin-K-dependent clotting factors type 2 (VKCFD2; Online Mendelian Inheritance in Man (OMIM) 607473), and resistance to coumarin-type anticoagulant drugs (warfarin resistance, WR; OMIM 122700). Here we identify, by using linkage information from three species, the gene vitamin K epoxide reductase complex subunit 1 (VKORC1), which encodes a small transmembrane protein of the endoplasmic reticulum. VKORC1 contains missense mutations in both human disorders and in a warfarin-resistant rat strain. Overexpression of wild-type VKORC1, but not VKORC1 carrying the VKCFD2 mutation, leads to a marked increase in VKOR activity, which is sensitive to warfarin inhibition.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Suttie, J. W. The biochemical basis of warfarin therapy. Adv. Exp. Med. Biol. 214, 3–16 (1987)
    CAS PubMed Google Scholar
  2. Nelsestuen, G. L., Zytkovicz, T. H. & Howard, J. B. The mode of action of vitamin K. Identification of γ-carboxyglutamic acid as a component of prothrombin. J. Biol. Chem. 249, 6347–6350 (1974)
    CAS PubMed Google Scholar
  3. Stenflo, J., Fernlund, P., Egan, W. & Roepstorff, P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc. Natl Acad. Sci. USA 71, 2730–2733 (1974)
    Article ADS CAS Google Scholar
  4. Fasco, M. J., Principe, L. M., Walsh, W. A. & Friedman, P. A. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes. Biochemistry 22, 5655–5660 (1983)
    Article CAS Google Scholar
  5. Cain, D., Hutson, S. M. & Wallin, R. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J. Biol. Chem. 272, 29068–29075 (1997)
    Article CAS Google Scholar
  6. Begent, L. A. et al. Characterization and purification of the vitamin K1 2,3-epoxide reductases system from rat liver. J. Pharm. Pharmacol. 53, 481–486 (2001)
    Article CAS Google Scholar
  7. Lee, J. J. & Fasco, M. J. Metabolism of vitamin K and vitamin K 2,3-epoxide via interaction with a common disulfide. Biochemistry 23, 2246–2252 (1984)
    Article CAS Google Scholar
  8. Wallin, R., Hutson, S. M., Cain, D., Sweatt, A. & Sane, D. C. A molecular mechanism for genetic warfarin resistance in the rat. FASEB J. 15, 2542–2544 (2001)
    Article CAS Google Scholar
  9. Fregin, A. et al. Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16. Blood 100, 3229–3232 (2002)
    Article CAS Google Scholar
  10. Kohn, M. H. & Pelz, H. J. Genomic assignment of the warfarin resistance locus, Rw, in the rat. Mamm. Genome 10, 696–698 (1999)
    Article CAS Google Scholar
  11. Greaves, J. H. & Ayres, P. Heritable resistance to warfarin in rats. Nature 215, 877–878 (1967)
    Article ADS Google Scholar
  12. Wallace, M. E. & MacSwiney, F. J. A major gene controlling warfarin-resistance in the house mouse. J. Hyg. (Lond.) 76, 173–181 (1976)
    Article CAS Google Scholar
  13. Martin, A. D., Steed, L. C., Redfern, R., Gill, J. E. & Huson, L. W. Warfarin-resistance genotype determination in the Norway rat. Rattus norvegicus. Lab. Anim. 13, 209–214 (1979)
    Article CAS Google Scholar
  14. Thijssen, H. H. & Pelz, H. J. in Advances in Vertebrate Pest Management (eds Pelz, H. J., Cowan, D. P. & Feare, C. J.) 181–192 (Filander, Fürth, 2001)
    Google Scholar
  15. Jackson, M. R., Nilsson, T. & Peterson, P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9, 3153–3162 (1990)
    Article CAS Google Scholar
  16. Li, T., Yang, C. T., Jin, D. & Stafford, D. W. Identification of a Drosophila vitamin K-dependent γ-glutamyl carboxylase. J. Biol. Chem. 275, 18291–18296 (2000)
    Article CAS Google Scholar
  17. Bandyopadhyay, P. K. et al. Gamma-glutamyl carboxylation: an extracellular posttranslational modification that antedates the divergence of molluscs, arthropods, and chordates. Proc. Natl Acad. Sci. USA 99, 1264–1269 (2002)
    Article ADS CAS Google Scholar
  18. Romero, E. E., Velazquez-Estades, L. J., Deo, R., Schapiro, B. & Roth, D. A. Cloning of rat vitamin K-dependent γ-glutamyl carboxylase and developmentally regulated gene expression in postimplantation embryos. Exp. Cell Res. 243, 334–346 (1998)
    Article CAS Google Scholar
  19. Wallin, R. & Martin, L. F. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin. J. Clin. Invest. 76, 1879–1884 (1985)
    Article CAS Google Scholar
  20. Presnell, S. R. & Stafford, D. W. The vitamin K-dependent carboxylase. Thromb. Haemost. 87, 937–946 (2002)
    Article CAS Google Scholar
  21. Oldenburg, J. et al. Congenital deficiency of vitamin K dependent coagulation factors in two families presents as a genetic defect of the vitamin K-epoxide- reductase complex. Thromb. Haemost. 84, 937–941 (2000)
    Article CAS Google Scholar
  22. Fasco, M. J., Preusch, P. C., Hildebrandt, E. & Suttie, J. W. Formation of hydroxyvitamin K by vitamin K epoxide reductase of warfarin-resistant rats. J. Biol. Chem. 258, 4372–4380 (1983)
    CAS PubMed Google Scholar
  23. Hörtnagel, K., Prokisch, H. & Meitinger, T. An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria. Hum. Mol. Genet. 12, 321–327 (2003)
    Article Google Scholar

Download references

Acknowledgements

We thank H. Hermann-Brackmann, W. Eberl, J. Pattinson, A.-N. Parkes and R. Jurgutis for the donation and clinical characterization of patient samples; V. Milenkovic for technical assistance and H. Höhn, T. Meitinger and T. Wienker for discussions and critically reading the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG), the Bundesministerium für Bildung und Forschung Deutsches Zentrum für Luft- und Raumfahrt (BMBF/DLR), Baxter Germany, the Stiftung Hämotherapie-Forschung, the Gesellschaft für Thrombose- und Hämostaseforschung (GTH) and the BMBF projects German National Genome Research Network (NGFN) and Bioinformatics for the Functional Analysis of Mammalian Genomes (BFAM).

Author information

Author notes

  1. Simone Rost and Andreas Fregin: These authors contributed equally to this work

Authors and Affiliations

  1. Department of Human Genetics, University of Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
    Simone Rost, Andreas Fregin, Clemens R. Müller & Johannes Oldenburg
  2. Institute of Human Genetics, GSF National Research Center, Ingolstädter Landstrasse 1, 85764, München-Neuherberg, Germany
    Simone Rost, Konstanze Hörtnagel & Tim M. Strom
  3. Institute of Transfusion Medicine and Immune Haematology of the DRK Blood Donor Service, Johann Wolfgang Goethe-Universität, Sandhofstrasse 1, 60526, Frankfurt, Germany
    Vytautas Ivaskevicius, Erhard Seifried & Johannes Oldenburg
  4. Department of Physiological Chemistry II, University of Würzburg, Biozentrum, Am Hubland, 97074, Würzburg, Germany
    Ernst Conzelmann
  5. Federal Biological Research Center for Agriculture and Forestry, Institute for Nematology and Vertebrate Research, Toppheideweg 88, 48161, Münster, Germany
    Hans-Joachim Pelz
  6. Department of Medicine, Nordland Hospital, 8092, Bodo, Norway
    Knut Lappegard
  7. Center of Internal Medicine, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, 60528, Frankfurt, Germany
    Inge Scharrer
  8. MRC Clinical Sciences Centre, Imperial College, W12 ONN, London, UK
    Edward G. D. Tuddenham
  9. Institute of Human Genetics, Klinikum rechts der Isar, Technical University, 81675, München, Germany
    Tim M. Strom

Authors

  1. Simone Rost
  2. Andreas Fregin
  3. Vytautas Ivaskevicius
  4. Ernst Conzelmann
  5. Konstanze Hörtnagel
  6. Hans-Joachim Pelz
  7. Knut Lappegard
  8. Erhard Seifried
  9. Inge Scharrer
  10. Edward G. D. Tuddenham
  11. Clemens R. Müller
  12. Tim M. Strom
  13. Johannes Oldenburg

Corresponding author

Correspondence toJohannes Oldenburg.

Ethics declarations

Competing interests

Baxter Healthcare Corporation has filed a patent protecting the diagnostic and therapeutic consequences of the research described in the paper. Commercialization of the patent may result in financial benefits to the authors affiliated with the University of Würzburg and the Technical University of Munich.

Rights and permissions

About this article

Cite this article

Rost, S., Fregin, A., Ivaskevicius, V. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.Nature 427, 537–541 (2004). https://doi.org/10.1038/nature02214

Download citation

This article is cited by