Structure of the signal recognition particle interacting with the elongation-arrested ribosome (original) (raw)

References

  1. Blobel, G. & Sabatini, D. in Biomembranes (ed. Manson, L. A.) 193–195 (Plenum, New York, 1971)
    Book Google Scholar
  2. Walter, P., Ibrahimi, I. & Blobel, G. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to _in-vitro_-assembled polysomes synthesizing secretory protein. J. Cell Biol. 91, 545–550 (1981)
    Article CAS Google Scholar
  3. Koch, H. G., Moser, M. & Muller, M. Signal recognition particle-dependent protein targeting, universal to all kingdoms of life. Rev. Physiol. Biochem. Pharmacol. 146, 55–94 (2003)
    Article CAS Google Scholar
  4. Gundelfinger, E. D., Krause, E., Melli, M. & Dobberstein, B. The organization of the 7SL RNA in the signal recognition particle. Nucleic Acids Res. 11, 7363–7374 (1983)
    Article CAS Google Scholar
  5. Siegel, V. & Walter, P. Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP. Cell 52, 39–49 (1988)
    Article CAS Google Scholar
  6. Walter, P. & Blobel, G. Disassembly and reconstitution of signal recognition particle. Cell 34, 525–533 (1983)
    Article CAS Google Scholar
  7. Connolly, T. & Gilmore, R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57, 599–610 (1989)
    Article CAS Google Scholar
  8. Bernstein, H. D. et al. Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature 340, 482–486 (1989)
    Article ADS CAS Google Scholar
  9. Romisch, K., Webb, J., Lingelbach, K., Gausepohl, H. & Dobberstein, B. The 54-kD protein of signal recognition particle contains a methionine-rich RNA binding domain. J. Cell Biol. 111, 1793–1802 (1990)
    Article CAS Google Scholar
  10. Batey, R. T., Rambo, R. P., Lucast, L., Rha, B. & Doudna, J. A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287, 1232–1239 (2000)
    Article ADS CAS Google Scholar
  11. Zopf, D., Bernstein, H. D., Johnson, A. E. & Walter, P. The methionine-rich domain of the 54 kD protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511–4517 (1990)
    Article CAS Google Scholar
  12. Pool, M. R., Stumm, J., Fulga, T. A., Sinning, I. & Dobberstein, B. Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 1345–1348 (2002)
    Article ADS CAS Google Scholar
  13. Siegel, V. & Walter, P. Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature 320, 81–84 (1986)
    Article ADS CAS Google Scholar
  14. Walter, P. & Blobel, G. Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 91, 557–561 (1981)
    Article CAS Google Scholar
  15. Wolin, S. L. & Walter, P. Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate. J. Cell Biol. 109, 2617–2622 (1989)
    Article CAS Google Scholar
  16. Mason, N., Ciufo, L. F. & Brown, J. D. Elongation arrest is a physiologically important function of signal recognition particle. EMBO J. 19, 4164–4174 (2000)
    Article CAS Google Scholar
  17. Siegel, V. & Walter, P. Elongation arrest is not a prerequisite for secretory protein translocation across the microsomal membrane. J. Cell Biol. 100, 1913–1921 (1985)
    Article CAS Google Scholar
  18. Andrews, D. W., Walter, P. & Ottensmeyer, F. P. Evidence for an extended 7SL RNA structure in the signal recognition particle. EMBO J. 6, 3471–3477 (1987)
    Article CAS Google Scholar
  19. Nagai, K. et al. Structure, function and evolution of the signal recognition particle. EMBO J. 22, 3479–3485 (2003)
    Article CAS Google Scholar
  20. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001)
    Article CAS Google Scholar
  21. Walter, P. & Blobel, G. Subcellular distribution of signal recognition particle and 7SL-RNA determined with polypeptide-specific antibodies and complementary DNA probe. J. Cell Biol. 97, 1693–1699 (1983)
    Article CAS Google Scholar
  22. Spahn, C. M. et al. Structure of the 80S ribosome from Saccharomyces cerevisiae tRNA–ribosome and subunit–subunit interactions. Cell 107, 373–386 (2001)
    Article CAS Google Scholar
  23. Kuglstatter, A., Oubridge, C. & Nagai, K. Induced structural changes of 7SL RNA during the assembly of human signal recognition particle. Nature Struct. Biol. 9, 740–744 (2002)
    Article CAS Google Scholar
  24. Huang, Q., Abdulrahman, S., Yin, J. & Zwieb, C. Systematic site-directed mutagenesis of human protein SRP54: interactions with signal recognition particle RNA and modes of signal peptide recognition. Biochemistry 41, 11362–11371 (2002)
    Article CAS Google Scholar
  25. Padmanabhan, S. & Freymann, D. M. The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase. Struct. Fold. Des. 9, 859–867 (2001)
    Article CAS Google Scholar
  26. Rosendal, K. R., Wild, K., Montoya, G. & Sinning, I. Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proc. Natl Acad. Sci. USA 100, 14701–14706 (2003)
    Article ADS CAS Google Scholar
  27. Siegel, V. & Walter, P. Binding sites of the 19-kDa and 68/72-kDa signal recognition particle (SRP) proteins on SRP RNA as determined in protein–RNA ‘footprinting’. Proc. Natl Acad. Sci. USA 85, 1801–1805 (1988)
    Article ADS CAS Google Scholar
  28. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000)
    Article ADS CAS Google Scholar
  29. Weichenrieder, O., Wild, K., Strub, K. & Cusack, S. Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408, 167–173 (2000)
    Article ADS CAS Google Scholar
  30. Rosenblad, M. A., Gorodkin, J., Knudsen, B., Zwieb, C. & Samuelsson, T. SRPDB: signal recognition particle database. Nucleic Acids Res. 31, 363–364 (2003)
    Article CAS Google Scholar
  31. Gu, S. Q., Peske, F., Wieden, H. J., Rodnina, M. V. & Wintermeyer, W. The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 9, 566–573 (2003)
    Article CAS Google Scholar
  32. Eisner, G., Koch, H. G., Beck, K., Brunner, J. & Muller, M. Ligand crowding at a nascent signal sequence. J. Cell Biol. 163, 35–44 (2003)
    Article CAS Google Scholar
  33. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002)
    Article ADS CAS Google Scholar
  34. Ullers, R. S. et al. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. J. Cell Biol. 161, 679–684 (2003)
    Article CAS Google Scholar
  35. Rinke-Appel, J. et al. Crosslinking of 4.5S RNA to the Escherichia coli ribosome in the presence or absence of the protein Ffh. RNA 8, 612–625 (2002)
    Article CAS Google Scholar
  36. Morgan, D. G., Menetret, J. F., Neuhof, A., Rapoport, T. A. & Akey, C. W. Structure of the mammalian ribosome–channel complex at 17 Å resolution. J. Mol. Biol. 324, 871–886 (2002)
    Article CAS Google Scholar
  37. Moller, I. et al. A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. Proc. Natl Acad. Sci. USA 95, 13425–13430 (1998)
    Article ADS CAS Google Scholar
  38. Thomas, Y., Bui, N. & Strub, K. A truncation in the 14 kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle. Nucleic Acids Res. 25, 1920–1929 (1997)
    Article CAS Google Scholar
  39. Wilson, D. N. et al. Protein synthesis at atomic resolution: mechanistics of translation in the light of highly resolved structures for the ribosome. Curr. Protein Peptide Sci. 3, 1–53 (2002)
    Article CAS Google Scholar
  40. Gomez-Lorenzo, M. G. et al. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 Å resolution. EMBO J. 19, 2710–2718 (2000)
    Article CAS Google Scholar
  41. Spahn, C. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. (in the press)
  42. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nature Struct. Biol. 10, 899–906 (2003)
    Article CAS Google Scholar
  43. Wolin, S. L. & Walter, P. Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J. 7, 3559–3569 (1988)
    Article CAS Google Scholar
  44. Ogg, S. C. & Walter, P. SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation. Cell 81, 1075–1084 (1995)
    Article CAS Google Scholar
  45. Andreazzoli, M. & Gerbi, S. A. Changes in 7SL RNA conformation during the signal recognition particle cycle. EMBO J. 10, 767–777 (1991)
    Article CAS Google Scholar
  46. Martoglio, B., Hauser, S. & Dobberstein, B. in Cell Biology: A Laboratory Handbook (ed. Celis, J. C.) 265–273 (Academic, San Diego, 1997)
    Google Scholar
  47. Walter, P. & Blobel, G. Signal recognition particle: a ribonucleoprotein required for cotranslational translocation of proteins, isolation and properties. Methods Enzymol. 96, 682–691 (1983)
    Article CAS Google Scholar
  48. Wagenknecht, T., Grassucci, R. & Frank, J. Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. J. Mol. Biol. 199, 137–147 (1988)
    Article CAS Google Scholar
  49. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  50. Carson, M. Ribbons 2.0. Appl. Crystallogr. 24, 103–106 (1991)
    Article Google Scholar

Download references