Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene (original) (raw)
References
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell116, 499–509 (2004) ArticleCAS Google Scholar
Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science296, 916–919 (2002) ArticleADSCAS Google Scholar
Hurowitz, E. H. & Brown, P. O. Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae. Genome Biol.5, R2 (2003) Article Google Scholar
Rinn, J. L. et al. The transcriptional activity of human chromosome 22. Genes Dev.17, 529–540 (2003) ArticleCAS Google Scholar
Saha, S. et al. Using the transcriptome to annotate the genome. Nature Biotechnol.20, 508–512 (2002) ArticleCAS Google Scholar
Chen, J. et al. Identifying novel transcripts and novel genes in the human genome by using novel SAGE tags. Proc. Natl Acad. Sci. USA99, 12257–12262 (2002) ArticleADSCAS Google Scholar
Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R. & Fraser, P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol. Cell5, 377–386 (2000) ArticleCAS Google Scholar
Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev.11, 2494–2509 (1997) ArticleCAS Google Scholar
Martens, J. A. & Winston, F. Evidence that Swi/Snf directly represses transcription in S. cerevisiae. Genes Dev.16, 2231–2236 (2002) ArticleCAS Google Scholar
Albers, E., Laize, V., Blomberg, A., Hohmann, S. & Gustafsson, L. Ser3p (Yer081wp) and Ser33p (Yil074cp) are phosphoglycerate dehydrogenases in Saccharomyces cerevisiae. J. Biol. Chem.278, 10264–10272 (2003) ArticleCAS Google Scholar
Cliften, P. et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science301, 71–76 (2003) ArticleADSCAS Google Scholar
Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature423, 241–254 (2003) ArticleADSCAS Google Scholar
van Hoof, A., Lennertz, P. & Parker, R. Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol.20, 441–452 (2000) ArticleCAS Google Scholar
Andersen, A. A. & Panning, B. Epigenetic gene regulation by noncoding RNAs. Curr. Opin. Cell Biol.15, 281–289 (2003) ArticleCAS Google Scholar
Hirschman, J. E., Durbin, K. J. & Winston, F. Genetic evidence for promoter competition in Saccharomyces cerevisiae. Mol. Cell. Biol.8, 4608–4615 (1988) ArticleCAS Google Scholar
Emerman, M. & Temin, H. M. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell39, 449–467 (1984) ArticleCAS Google Scholar
Adhya, S. & Gottesman, M. Promoter occlusion: transcription through a promoter may inhibit its activity. Cell29, 939–944 (1982) ArticleCAS Google Scholar
Corbin, V. & Maniatis, T. Role of transcriptional interference in the Drosophila melanogaster Adh promoter switch. Nature337, 279–282 (1989) ArticleADSCAS Google Scholar
Cullen, B. R., Lomedico, P. T. & Ju, G. Transcriptional interference in avian retroviruses–implications for the promoter insertion model of leukaemogenesis. Nature307, 241–245 (1984) ArticleADSCAS Google Scholar
Greger, I. H., Aranda, A. & Proudfoot, N. Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA97, 8415–8420 (2000) ArticleADSCAS Google Scholar
Hausler, B. & Somerville, R. L. Interaction in vivo between strong closely spaced constitutive promoters. J. Mol. Biol.127, 353–356 (1979) ArticleCAS Google Scholar
Proudfoot, N. J. Transcriptional interference and termination between duplicated alpha-globin gene constructs suggests a novel mechanism for gene regulation. Nature322, 562–565 (1986) ArticleADSCAS Google Scholar
Valerius, O., Brendel, C., Duvel, K. & Braus, G. H. Multiple factors prevent transcriptional interference at the yeast ARO4-HIS7 locus. J. Biol. Chem.277, 21440–21445 (2002) ArticleCAS Google Scholar
Gottesman, S. Stealth regulation: biological circuits with small RNA switches. Genes Dev.16, 2829–2842 (2002) ArticleCAS Google Scholar
Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev.14, 2452–2460 (2000) ArticleCAS Google Scholar
Dudley, A. M., Rougeulle, C. & Winston, F. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev.13, 2940–2945 (1999) ArticleCAS Google Scholar
Birse, C. E., Lee, B. A., Hansen, K. & Proudfoot, N. J. Transcriptional termination signals for RNA polymerase II in fission yeast. EMBO J.16, 3633–3643 (1997) ArticleCAS Google Scholar
Duina, A. A. & Winston, F. Analysis of a mutant histone H3 that perturbs the association of Swi/Snf with chromatin. Mol. Cell. Biol.24, 561–572 (2004) ArticleCAS Google Scholar
Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev.6, 2288–2298 (1992) ArticleCAS Google Scholar
Dudley, A. M., Gansheroff, L. J. & Winston, F. Specific components of the SAGA complex are required for Gcn4- and Gcr1-mediated activation of the his4-912d promoter in Saccharomyces cerevisiae. Genetics151, 1365–1378 (1999) CASPubMedPubMed Central Google Scholar