Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene (original) (raw)

References

  1. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004)
    Article CAS Google Scholar
  2. Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919 (2002)
    Article ADS CAS Google Scholar
  3. Hurowitz, E. H. & Brown, P. O. Genome-wide analysis of mRNA lengths in Saccharomyces cerevisiae. Genome Biol. 5, R2 (2003)
    Article Google Scholar
  4. Rinn, J. L. et al. The transcriptional activity of human chromosome 22. Genes Dev. 17, 529–540 (2003)
    Article CAS Google Scholar
  5. Saha, S. et al. Using the transcriptome to annotate the genome. Nature Biotechnol. 20, 508–512 (2002)
    Article CAS Google Scholar
  6. Chen, J. et al. Identifying novel transcripts and novel genes in the human genome by using novel SAGE tags. Proc. Natl Acad. Sci. USA 99, 12257–12262 (2002)
    Article ADS CAS Google Scholar
  7. Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R. & Fraser, P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol. Cell 5, 377–386 (2000)
    Article CAS Google Scholar
  8. Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11, 2494–2509 (1997)
    Article CAS Google Scholar
  9. Martens, J. A. & Winston, F. Evidence that Swi/Snf directly represses transcription in S. cerevisiae. Genes Dev. 16, 2231–2236 (2002)
    Article CAS Google Scholar
  10. Albers, E., Laize, V., Blomberg, A., Hohmann, S. & Gustafsson, L. Ser3p (Yer081wp) and Ser33p (Yil074cp) are phosphoglycerate dehydrogenases in Saccharomyces cerevisiae. J. Biol. Chem. 278, 10264–10272 (2003)
    Article CAS Google Scholar
  11. Cliften, P. et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 71–76 (2003)
    Article ADS CAS Google Scholar
  12. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003)
    Article ADS CAS Google Scholar
  13. van Hoof, A., Lennertz, P. & Parker, R. Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol. Cell. Biol. 20, 441–452 (2000)
    Article CAS Google Scholar
  14. Andersen, A. A. & Panning, B. Epigenetic gene regulation by noncoding RNAs. Curr. Opin. Cell Biol. 15, 281–289 (2003)
    Article CAS Google Scholar
  15. Hirschman, J. E., Durbin, K. J. & Winston, F. Genetic evidence for promoter competition in Saccharomyces cerevisiae. Mol. Cell. Biol. 8, 4608–4615 (1988)
    Article CAS Google Scholar
  16. Emerman, M. & Temin, H. M. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39, 449–467 (1984)
    Article CAS Google Scholar
  17. Adhya, S. & Gottesman, M. Promoter occlusion: transcription through a promoter may inhibit its activity. Cell 29, 939–944 (1982)
    Article CAS Google Scholar
  18. Corbin, V. & Maniatis, T. Role of transcriptional interference in the Drosophila melanogaster Adh promoter switch. Nature 337, 279–282 (1989)
    Article ADS CAS Google Scholar
  19. Cullen, B. R., Lomedico, P. T. & Ju, G. Transcriptional interference in avian retroviruses–implications for the promoter insertion model of leukaemogenesis. Nature 307, 241–245 (1984)
    Article ADS CAS Google Scholar
  20. Greger, I. H., Aranda, A. & Proudfoot, N. Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 8415–8420 (2000)
    Article ADS CAS Google Scholar
  21. Hausler, B. & Somerville, R. L. Interaction in vivo between strong closely spaced constitutive promoters. J. Mol. Biol. 127, 353–356 (1979)
    Article CAS Google Scholar
  22. Proudfoot, N. J. Transcriptional interference and termination between duplicated alpha-globin gene constructs suggests a novel mechanism for gene regulation. Nature 322, 562–565 (1986)
    Article ADS CAS Google Scholar
  23. Valerius, O., Brendel, C., Duvel, K. & Braus, G. H. Multiple factors prevent transcriptional interference at the yeast ARO4-HIS7 locus. J. Biol. Chem. 277, 21440–21445 (2002)
    Article CAS Google Scholar
  24. Gottesman, S. Stealth regulation: biological circuits with small RNA switches. Genes Dev. 16, 2829–2842 (2002)
    Article CAS Google Scholar
  25. Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000)
    Article CAS Google Scholar
  26. Dudley, A. M., Rougeulle, C. & Winston, F. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev. 13, 2940–2945 (1999)
    Article CAS Google Scholar
  27. Birse, C. E., Lee, B. A., Hansen, K. & Proudfoot, N. J. Transcriptional termination signals for RNA polymerase II in fission yeast. EMBO J. 16, 3633–3643 (1997)
    Article CAS Google Scholar
  28. Duina, A. A. & Winston, F. Analysis of a mutant histone H3 that perturbs the association of Swi/Snf with chromatin. Mol. Cell. Biol. 24, 561–572 (2004)
    Article CAS Google Scholar
  29. Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6, 2288–2298 (1992)
    Article CAS Google Scholar
  30. Dudley, A. M., Gansheroff, L. J. & Winston, F. Specific components of the SAGA complex are required for Gcn4- and Gcr1-mediated activation of the his4-912d promoter in Saccharomyces cerevisiae. Genetics 151, 1365–1378 (1999)
    CAS PubMed PubMed Central Google Scholar

Download references