Structural basis of the α1–β subunit interaction of voltage-gated Ca2+ channels (original) (raw)

References

  1. Catterall, W. A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000)
    Article CAS Google Scholar
  2. Birnbaumer, L. et al. Structures and functions of calcium channel beta subunits. J. Bioenerg. Biomembr. 30, 357–375 (1998)
    Article CAS Google Scholar
  3. Arikkath, J. & Campbell, K. P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13, 298–307 (2003)
    Article CAS Google Scholar
  4. Dolphin, A. C. β subunits of voltage-gated calcium channels. J. Bioenerg. Biomembr. 55, 607–627 (2003)
    CAS Google Scholar
  5. De Waard, M., Pragnell, M. & Campbell, K. P. Ca2+ channel regulation by a conserved beta subunit domain. Neuron 13, 495–503 (1994)
    Article CAS Google Scholar
  6. De Waard, M., Scott, V. E., Pragnell, M. & Campbell, K. P. Identification of critical amino acids involved in α1-β interaction in voltage-dependent Ca2+ channels. FEBS Lett. 380, 272–276 (1996)
    Article CAS Google Scholar
  7. Pragnell, M. et al. Calcium channel β-subunit binds to a conserved motif in the I–II cytoplasmic linker of the α1-subunit. Nature 368, 67–70 (1994)
    Article ADS CAS Google Scholar
  8. Canti, C. et al. Evidence for two concentration-dependent processes for β-subunit effects on α1B calcium channels. Biophys. J. 81, 1439–1451 (2001)
    Article ADS CAS Google Scholar
  9. Opatowsky, Y., Chomsky-Hecht, O., Kang, M. G., Campbell, K. P. & Hirsch, J. A. The voltage-dependent calcium channel beta subunit contains two stable interacting domains. J. Biol. Chem. 278, 52323–52332 (2003)
    Article CAS Google Scholar
  10. Hanlon, M. R., Berrow, N. S., Dolphin, A. C. & Wallace, B. A. Modelling of a voltage-dependent Ca2+ channel beta subunit as a basis for understanding its functional properties. FEBS Lett. 445, 366–370 (1999)
    Article CAS Google Scholar
  11. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991)
    Article ADS CAS Google Scholar
  12. Tavares, G. A., Panepucci, E. H. & Brunger, A. T. Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Mol. Cell 8, 1313–1325 (2001)
    Article CAS Google Scholar
  13. Zarrinpar, A., Bhattacharyya, R. P. & Lim, W. A. The structure and function of proline recognition domains. Sci. STKE 2003, RE8 (2003)
    PubMed Google Scholar
  14. Larson, S. M. & Davidson, A. R. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Protein Sci. 9, 2170–2180 (2000)
    Article CAS Google Scholar
  15. Blaszcyk, J., Li, Y., Yan, H. & Ji, X. Crystal structure of unligated guanylate kinase from yeast reveals GMP-induced conformational changes. J. Mol. Biol. 307, 247–257 (2001)
    Article Google Scholar
  16. Sheng, M. & Pak, D. T. Ligand-gated ion channel interactions with cytoskeletal and signaling proteins. Annu. Rev. Physiol. 62, 755–778 (2000)
    Article CAS Google Scholar
  17. Beguin, P. et al. Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature 411, 701–706 (2001)
    Article ADS CAS Google Scholar
  18. Finlin, B. S., Crump, S. M., Satin, J. & Andres, D. A. Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases. Proc. Natl Acad. Sci. USA 100, 14469–14474 (2003)
    Article ADS CAS Google Scholar
  19. McGee, A. W. et al. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol. Cell 8, 1291–1301 (2001)
    Article CAS Google Scholar
  20. Garcia, E. P. et al. SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron 21, 727–739 (1998)
    Article CAS Google Scholar
  21. Maximov, A., Sudhof, T. C. & Bezprozvanny, I. Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274, 24453–24456 (1999)
    Article CAS Google Scholar
  22. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
    Article CAS Google Scholar
  23. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)
    Article CAS Google Scholar
  24. Jones, T. A., Zou, J. Y.,, Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  25. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article CAS Google Scholar
  26. Jogl, G., Tao, X., Xu, Y. & Tong, L. COMO: a program for combined molecular replacement. Acta Crystallogr. D 57, 1127–1134 (2001)
    Article CAS Google Scholar
  27. Wu, L., Bauer, C. S., Zhen, X. G., Xie, C. & Yang, J. Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419, 947–952 (2002)
    Article ADS CAS Google Scholar
  28. Carson, M. Ribbon models of macromolecules. J. Mol. Graph. 5, 103–106 (1987)
    Article CAS Google Scholar
  29. Nicholls, A., Sharp, K. & Honig, B. H. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991)
    Article CAS Google Scholar
  30. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)
    Article Google Scholar

Download references