Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors (original) (raw)
References
Hirose, Y. & Manley, J. L. RNA polymerase II and the integration of nuclear events. Genes Dev.14, 1415–1429 (2000) CAS Google Scholar
Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating mRNA processing with transcription. Cell108, 501–512 (2002) ArticleCAS Google Scholar
Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8Ångstrom resolution. Science292, 1863–1876 (2001) ArticleADSCAS Google Scholar
Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev.14, 2452–2460 (2000) ArticleCAS Google Scholar
Ahn, S. H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell13, 67–76 (2004) ArticleCAS Google Scholar
Ni, Z., Schwartz, B. E., Werner, J., Suarez, J. R. & Lis, J. T. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol. Cell13, 55–65 (2004) ArticleCAS Google Scholar
Yuryev, A. et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl Acad. Sci. USA93, 6975–6980 (1996) ArticleADSCAS Google Scholar
Patturajan, M., Wei, X., Berezney, R. & Corden, J. L. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II. Mol. Cell. Biol.18, 2406–2415 (1998) ArticleCAS Google Scholar
Steinmetz, E. J., Conrad, N. K., Brow, D. A. & Corden, J. L. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature413, 327–331 (2001) ArticleADSCAS Google Scholar
Barilla, D., Lee, B. A. & Proudfoot, N. J. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA98, 445–450 (2001) ADSCASPubMed Google Scholar
Misra, S., Puertollano, R., Kato, Y., Bonifacino, J. S. & Hurley, J. H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature415, 933–937 (2002) ArticleADSCAS Google Scholar
Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell94, 193–204 (1998) ArticleCAS Google Scholar
Sadowski, M., Dichtl, B., Hubner, W. & Keller, W. Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J.22, 2167–2177 (2003) ArticleCAS Google Scholar
West, M. L. & Corden, J. L. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics140, 1223–1233 (1995) CASPubMedPubMed Central Google Scholar
Suzuki, M. SPXX, a frequent sequence motif in gene regulatory proteins. J. Mol. Biol.207, 61–84 (1989) ArticleCAS Google Scholar
Licatalosi, D. D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell9, 1101–1111 (2002) ArticleCAS Google Scholar
Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T. & Noel, J. P. Structural basis for phosphoserine–proline recognition by group IV WW domains. Nature Struct. Biol.7, 639–643 (2000) ArticleCAS Google Scholar
Fabrega, C., Shen, V., Shuman, S. & Lima, C. D. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol. Cell11, 1549–1561 (2003) ArticleCAS Google Scholar
Kumaki, Y., Matsushima, N., Yoshida, H., Nitta, K. & Hikichi, K. Structure of the YSPTSPS repeat containing two SPXX motifs in the CTD of RNA polymerase II: NMR studies of cyclic model peptides reveal that the SPTS turn is more stable than SPSY in water. Biochim. Biophys. Acta.1548, 81–93 (2001) ArticleCAS Google Scholar
Cagas, P. M. & Corden, J. L. Structural studies of a synthetic peptide derived from the carboxyl-terminal domain of RNA polymerase II. Proteins21, 149–160 (1995) ArticleCAS Google Scholar
Meredith, G. D. et al. The C-terminal domain revealed in the structure of RNA polymerase II. J. Mol. Biol.258, 413–419 (1996) ArticleCAS Google Scholar
Zhang, J. & Corden, J. L. Phosphorylation causes a conformational change in the carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J. Biol. Chem.266, 2297–2302 (1991) CASPubMed Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997) ArticleCAS Google Scholar
Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr.26, 795–800 (1993) ArticleCAS Google Scholar
Smith, G. D., Nagar, B., Rini, J. M., Hauptman, H. A. & Blessing, R. H. The use of SnB to determine an anomalous scattering substructure. Acta. Crystallogr. D54, 799–804 (1998) ArticleCAS Google Scholar
Terwilliger, T. C. Automated structure solution, density modification and model building. Acta. Crystallogr.58, 1937–1940 (2002) Article Google Scholar
Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta. Crystallogr. A47, 110–119 (1991) Article Google Scholar
Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta. Crystallogr. D54, 905–921 (1998) Article Google Scholar
Armache, K. J., Kettenberger, H. & Cramer, P. Architecture of initiation-competent 12-subunit RNA polymerase II. Proc. Natl Acad. Sci. USA100, 6964–6968 (2003) ArticleADSCAS Google Scholar