Ahringer, J. Control of cell polarity and mitotic spindle positioning in animal cells. Curr. Opin. Cell Biol.15, 73–81 (2003) ArticleCAS Google Scholar
Sausedo, R. A., Smith, J. L. & Schoenwolf, G. C. Role of nonrandomly oriented cell division in shaping and bending of the neural plate. J. Comp. Neurol.381, 473–488 (1997) ArticleCAS Google Scholar
Schoenwolf, G. C. & Alvarez, I. S. Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate. Development106, 427–439 (1989) CASPubMed Google Scholar
Wei, Y. & Mikawa, T. Formation of the avian primitive streak from spatially restricted blastoderm: evidence for polarized cell division in the elongating streak. Development127, 87–96 (2000) CASPubMed Google Scholar
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn.203, 253–310 (1995) ArticleCAS Google Scholar
Kimmel, C. B., Warga, R. M. & Kane, D. A. Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development120, 265–276 (1994) CASPubMed Google Scholar
Woo, K. & Fraser, S. E. Order and coherence in the fate map of the zebrafish nervous system. Development121, 2595–2609 (1995) CAS Google Scholar
Concha, M. L. & Adams, R. J. Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis. Development125, 983–994 (1998) CASPubMed Google Scholar
Hertwig, O. Ueber den Werth der ersten Furchungszellen fur die Organbildung des Embryo. Experimentelle Studien am Froschund Tritonei. Arch. Mikrosk. Anat.42, 662–804 (1893) Article Google Scholar
Black, S. D. & Vincent, J. P. The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. II. Experimental dissociation by lateral compression of the egg. Dev. Biol.128, 65–71 (1988) ArticleCAS Google Scholar
Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature405, 81–85 (2000) ArticleADSCAS Google Scholar
Tada, M. & Smith, J. C. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development127, 2227–2238 (2000) CAS Google Scholar
Jessen, J. R. et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nature Cell Biol.4, 610–615 (2002) ArticleCAS Google Scholar
Rothbacher, U. et al. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J.19, 1010–1022 (2000) ArticleCAS Google Scholar
Hashimoto, H. et al. Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev. Biol.217, 138–152 (2000) ArticleCAS Google Scholar
Tago, K. et al. Inhibition of Wnt signaling by ICAT, a novel β-catenin-interacting protein. Genes Dev.14, 1741–1749 (2000) CASPubMedPubMed Central Google Scholar
He, X., Semenov, M., Kamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signalling: Arrows point the way. Development131, 1663–1677 (2004) ArticleCAS Google Scholar
Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature405, 76–81 (2000) ArticleADSCAS Google Scholar
Kilian, B. et al. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech. Dev.120, 467–476 (2003) ArticleCAS Google Scholar
Moon, R. T. et al. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development119, 97–111 (1993) CAS Google Scholar
Park, M. & Moon, R. T. The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nature Cell Biol.4, 20–25 (2002) ArticleCAS Google Scholar
Glickman, N. S., Kimmel, C. B., Jones, M. A. & Adams, R. J. Shaping the zebrafish notochord. Development130, 873–887 (2003) ArticleCAS Google Scholar
Elul, T. & Keller, R. Monopolar protrusive activity: a new morphogenic cell behavior in the neural plate dependent on vertical interactions with the mesoderm in Xenopus. Dev. Biol.224, 3–19 (2000) ArticleCAS Google Scholar
Sausedo, R. A. & Schoenwolf, G. C. Quantitative analyses of cell behaviors underlying notochord formation and extension in mouse embryos. Anat. Rec.239, 103–112 (1994) ArticleCAS Google Scholar
Schlesinger, A., Shelton, C. A., Maloof, J. N., Meneghini, M. & Bowerman, B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev.13, 2028–2038 (1999) ArticleCAS Google Scholar
Gho, M. & Schweisguth, F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila. Nature393, 178–181 (1998) ArticleADSCAS Google Scholar
Chalmers, A. D., Strauss, B. & Papalopulu, N. Oriented cell divisions asymmetrically segregate aPKC and generate cell fate diversity in the early Xenopus embryo. Development130, 2657–2668 (2003) ArticleCAS Google Scholar
Das, T., Payer, B., Cayouette, M. & Harris, W. A. In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina. Neuron37, 597–609 (2003) ArticleCAS Google Scholar
Koster, R. W. & Fraser, S. E. Tracing transgene expression in living zebrafish embryos. Dev. Biol.233, 329–346 (2001) ArticleCAS Google Scholar
Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA99, 7877–7882 (2002) ArticleADSCAS Google Scholar