Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks (original) (raw)
Kowalczykowski, S. C. Initiation of genetic recombination and recombination-dependent replication. Trends. Biochem. Sci.25, 156–165 (2000) ArticleCAS Google Scholar
Ponticelli, A. S., Schultz, D. W., Taylor, A. F. & Smith, G. R. Chi-dependent DNA strand cleavage by the RecBC enzyme. Cell41, 145–151 (1985) ArticleCAS Google Scholar
Taylor, A. F., Schultz, D. W., Ponticelli, A. S. & Smith, G. R. RecBC enzyme nicking at Chi sites during DNA unwinding: location and orientation-dependence of the cutting. Cell41, 153–163 (1985) ArticleCAS Google Scholar
Bianco, P. R. & Kowalczykowski, S. C. The recombination hotspot Chi is recognized by the translocating RecBCD enzyme as the single strand of DNA containing the sequence 5′-GCTGGTGG-3′. Proc. Natl Acad. Sci. USA94, 6706–6711 (1997) ArticleADSCAS Google Scholar
Spies, M. et al. A molecular throttle: the recombination hotspot Chi controls DNA translocation by the RecBCD helicase. Cell114, 647–654 (2003) ArticleCAS Google Scholar
Dixon, D. A. & Kowalczykowski, S. C. The recombination hotspot Chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell73, 87–96 (1993) ArticleCAS Google Scholar
Anderson, D. G. & Kowalczykowski, S. C. The recombination hot spot Chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes Dev.11, 571–581 (1997a) ArticleCAS Google Scholar
Taylor, A. F. & Smith, G. R. Strand specificity of nicking of DNA at Chi sites by RecBCD enzyme. J. Biol. Chem.270, 24459–24467 (1995b) ArticleCAS Google Scholar
Anderson, D. G. & Kowalczykowski, S. C. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a Chi-regulated manner. Cell90, 77–86 (1997b) ArticleCAS Google Scholar
Taylor, A. F. & Smith, G. R. Monomeric RecBCD enzyme binds and unwinds DNA. J. Biol. Chem.270, 24451–24458 (1995a) ArticleCAS Google Scholar
Boehmer, P. E. & Emmerson, P. T. Escherichia coli RecBCD enzyme: inducible overproduction and reconstitution of the ATP-dependent deoxyribonuclease from purified subunits. Gene102, 1–6 (1991) ArticleCAS Google Scholar
Yu, M., Souaya, J. & Julin, D. A. The 30 kDa C-terminal domain of the RecB protein is critical for the nuclease activity, but not the helicase activity, of the RecBCD enzyme from Escherichia coli. Proc. Natl Acad. Sci. USA95, 981–986 (1998) ArticleADSCAS Google Scholar
Handa, N., Ohashi, S., Kusano, K. & Kobayashi, I. Chi*, a chi-related 11-mer sequence partially active in an E. colirecC1004 strain. Genes Cells2, 525–536 (1997) ArticleCAS Google Scholar
Dillingham, M. S., Spies, M. & Kowalczykowski, S. C. RecBCD enzyme is a bipolar DNA helicase. Nature423, 893–897 (2003) ArticleADSCAS Google Scholar
Taylor, A. F. & Smith, G. R. RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature423, 889–893 (2003) ArticleADSCAS Google Scholar
Roman, L. J. & Kowalczykowski, S. C. Characterisation of the adenosinetriphosphatase activity of the Escherichia coli RecBCD enzyme: relationship of ATP hydrolysis to the unwinding of duplex DNA. Biochemistry28, 2873–2881 (1989) ArticleCAS Google Scholar
Ganesan, S. & Smith, G. R. Strand-specific binding to duplex DNA ends by the subunits of the Escherichia coli RecBCD enzyme. J. Mol. Biol.229, 67–78 (1993) ArticleCAS Google Scholar
Farah, J. A. & Smith, G. R. The RecBCD enzyme initiation complex for DNA unwinding: enzyme positioning and DNA opening. J. Mol. Biol.272, 699–715 (1997) ArticleCAS Google Scholar
Boehmer, P. E. & Emmerson, P. T. The RecB subunit of the Escherichia coli RecBCD enzyme couples ATP hydrolysis to DNA unwinding. J. Biol. Chem.267, 4981–4987 (1992) CASPubMed Google Scholar
Gorbalenya, A. E. & Koonin, E. V. Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol.3, 419–429 (1993) ArticleCAS Google Scholar
Subramanya, H. S., Bird, L. E., Brannigan, J. A. & Wigley, D. B. Crystal structure of a DExx box helicase. Nature384, 379–383 (1996) ArticleADSCAS Google Scholar
Korolev, S., Hsieh, J., Gauss, G. H., Lohman, T. M. & Waksman, G. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell90, 635–647 (1997) ArticleCAS Google Scholar
Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA helicase with a DNA substrate indicate an inchworm mechanism. Cell97, 75–84 (1999) ArticleCAS Google Scholar
Dillingham, M. S., Wigley, D. B. & Webb, M. R. Unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry39, 205–212 (2000) ArticleCAS Google Scholar
Soultanas, P., Dillingham, M. S., Wiley, P., Webb, M. R. & Wigley, D. B. Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism. EMBO J.19, 3799–3810 (2000) ArticleCAS Google Scholar
Singleton, M. R. & Wigley, D. B. Modularity and specialisation in Superfamily 1 and 2 helicases. J. Bacteriol.184, 1819–1826 (2002) ArticleCAS Google Scholar
Aravind, L., Makarova, K. S. & Koonin, E. V. Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res.28, 3417–3432 (2000) ArticleCAS Google Scholar
Kovall, R. & Matthews, B. W. Toroidal structure of λ-exonuclease. Science277, 1824–1827 (1997) ArticleCAS Google Scholar
Yu, M., Souaya, J. & Julin, D. A. Identification of the nuclease active site in the multifunctional RecBCD enzyme by creation of a chimeric enzyme. J. Mol. Biol.283, 797–808 (1998) ArticleCAS Google Scholar
Rosamond, J., Telander, K. M. & Linn, S. Modulation of the action of the RecBC enzyme of Escherichia coli K-12 by Ca2+. J. Biol. Chem.254, 8648–8652 (1979) Google Scholar
Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol.233, 123–138 (1993) ArticleCAS Google Scholar
Amundsen, S. K., Taylor, A. F. & Smith, G. R. Domain of RecC required for assembly of the regulatory RecD subunit into the Escherichia coli RecBCD holoenzyme. Genetics161, 483–492 (2002) CASPubMedPubMed Central Google Scholar
Chen, H. W., Ruan, B., Yu, M., Wang, J. & Julin, D. A. The RecD subunit of the RecBCD enzyme from Escherichia coli is a single-stranded DNA dependent ATPase. J. Biol. Chem.272, 10072–10079 (1997) ArticleCAS Google Scholar
Kuhn, B., Abdel-Monem, M., Krell, H. & Hoffmann-Berling, H. Evidence for two mechanisms for DNA unwinding catalyzed by DNA helicases. J. Biol. Chem.254, 11343–11350 (1979) CASPubMed Google Scholar
Dillingham, M. S., Soultanas, P., Wiley, P., Webb, M. R. & Wigley, D. B. Defining the roles of individual residues in the single-stranded DNA binding site of PcrA helicase. Proc. Natl Acad. Sci. USA98, 8381–8387 (2001) ArticleADSCAS Google Scholar
Bianco, P. R. & Kowalczykowski, S. C. Translocation step size and mechanism of the RecBC DNA helicase. Nature405, 368–372 (2000) ArticleADSCAS Google Scholar
Korangy, F. & Julin, D. A. Efficiency of ATP hydrolysis and DNA unwinding by the RecBC enzyme from Escherichia coli. Biochemistry33, 9552–9560 (1994) ArticleCAS Google Scholar
Schultz, D. W., Taylor, A. F. & Smith, G. R. Escherichia coli RecBC pseudorevertants lacking Chi recombinational hotspot activity. J. Bacteriol.155, 664–680 (1983) CASPubMedPubMed Central Google Scholar
Arnold, D. A., Bianco, P. R. & Kowalczykowski, S. C. The reduced levels of Chi recognition exhibited by the RecBC1004D enzyme reflect its recombination defect in vivo. J. Biol. Chem.273, 16476–16486 (1998) ArticleCAS Google Scholar
Arnold, D. A., Handa, N., Kobayashi, I. & Kowalczykowski, S. C. A novel, 11 nucleotide variant of Chi, Chi*: One of a class of sequences defining the Escherichia coli recombination hotspot Chi. J. Mol. Biol.300, 469–479 (2000) ArticleCAS Google Scholar
Kulkarni, A. & Julin, D. A. Specific inhibition of the E. coli RecBCD enzyme by Chi sequences in single-stranded oligodeoxynucleotides. Nucleic Acids Res.32, 3672–3682 (2004) ArticleCAS Google Scholar
Palas, K. M. & Kushner, S. R. Biochemical and physical properties of exonuclease V from Escherichia coli. J. Biol. Chem.265, 3447–3454 (1990) CASPubMed Google Scholar
Churchill, J. J. & Kowalczykowski, S. C. Identification of the RecA protein-loading domain of RecBCD enzyme. J. Mol. Biol.297, 537–542 (2000) ArticleCAS Google Scholar
Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr.26, 795–800 (1993) ArticleCAS Google Scholar
Weeks, C. M. & Miller, R. Optimising Shake-and-bake for proteins. Acta Crystallogr. D55, 492–500 (1999) ArticleCAS Google Scholar
de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for the multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol.276, 472–494 (1997) ArticleCAS Google Scholar
Collaborative Computing Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994) Article Google Scholar
Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 904–925 (1998) Article Google Scholar
Sanner, M. F., Spehner, J. C. & Olson, A. J. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers38, 305–320 (1996) ArticleCAS Google Scholar
Merritt, E. A. & Bacon, D. J. Raster3D: Photorealistic molecular graphics. Methods Enzymol.277, 505–524 (1997) ArticleCAS Google Scholar