Synaptic computation (original) (raw)

References

  1. Brown, R. E. & Milner, P. M. The legacy of Donald O. Hebb: more than the Hebb synapse. Nature Rev. Neurosci. 4, 1013–1019 (2003).
    Article CAS Google Scholar
  2. Lynch, M. A. Long-term potentiation and memory. Physiol. Rev. 84, 87–136 (2004).
    Article CAS Google Scholar
  3. Morris, R. G. Long-term potentiation and memory. Phil. Trans. R. Soc. Lond. B 358, 643–647 (2003).
    Article Google Scholar
  4. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).
    Article ADS CAS Google Scholar
  5. Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004).
    Article CAS Google Scholar
  6. Burrone, J. & Murthy, V. N. Synaptic gain control and homeostasis. Curr. Opin. Neurobiol. 13, 560–567 (2003).
    Article CAS Google Scholar
  7. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).
    Article CAS Google Scholar
  8. Eccles, J. C. The Physiology of Synapses (Springer-Verlag, New York, 1964).
    Book Google Scholar
  9. Katz, B. Nerve, Muscle and Synapse (McGraw Hill, New York, 1966).
    Google Scholar
  10. Kandel, E. K., Schwartz, J. H. & Jessel, T. M. Principles of Neural Science, 1414 (McGraw-Hill/Appleton & Lange, 2000).
    Google Scholar
  11. Trommershauser, J., Schneggenburger, R., Zippelius, A. & Neher, E. Heterogeneous presynaptic release probabilities: functional relevance for short-term plasticity. Biophys. J. 84, 1563–1579 (2003).
    Article ADS CAS Google Scholar
  12. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nature Neurosci. 1, 279–285 (1998).
    Article CAS Google Scholar
  13. Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl Acad. Sci. USA 95, 5323–5328 (1998).
    Article ADS CAS Google Scholar
  14. Auger, C. & Marty, A. Quantal currents at single-site central synapses. J. Physiol. 526(I), 3–11 (2000).
    Article CAS Google Scholar
  15. Magleby, K. L. in Synaptic Function (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 21–56 (Wiley, New York, 1987).
    Google Scholar
  16. Freund, T. F., Katona, I. & Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 83, 1017–1066 (2003).
    Article CAS Google Scholar
  17. Fitzsimonds, R. M. & Poo, M. M. Retrograde signaling in the development and modification of synapses. Physiol. Rev. 78, 143–170 (1998).
    Article CAS Google Scholar
  18. Trussell, L. O. & Fischbach, G. D. Glutamate receptor desensitization and its role in synaptic transmission. Neuron 3, 209–218 (1989).
    Article CAS Google Scholar
  19. Blitz, D. M. & Regehr, W. G. Retinogeniculate synaptic properties controlling spike number and timing in relay neurons. J. Neurophysiol. 90, 2438–2450 (2003).
    Article Google Scholar
  20. Chen, C., Blitz, D. M. & Regehr, W. G. Contributions of receptor desensitization and saturation to plasticity at the retinogeniculate synapse. Neuron 33, 779–788 (2002).
    Article CAS Google Scholar
  21. Jones, M. V. & Westbrook, G. L. The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci. 19, 96–101 (1996).
    Article CAS Google Scholar
  22. Xu-Friedman, M. A. & Regehr, W. G. Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. J. Neurosci. 23, 2182–2192 (2003).
    Article CAS Google Scholar
  23. Conn, P. J. Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann. NY Acad. Sci. 1003, 12–21 (2003).
    Article ADS CAS Google Scholar
  24. Johnston, D. et al. Active dendrites, potassium channels and synaptic plasticity. Phil. Trans. R. Soc. Lond. B 358, 667–674 (2003).
    Article ADS CAS Google Scholar
  25. Hausser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).
    Article ADS CAS Google Scholar
  26. Craig, A. M. & Boudin, H. Molecular heterogeneity of central synapses: afferent and target regulation. Nature Neurosci. 4, 569–578 (2001).
    Article CAS Google Scholar
  27. Thomson, A. M., Bannister, A. P., Mercer, A. & Morris, O. T. Target and temporal pattern selection at neocortical synapses. Phil. Trans. R. Soc. Lond. B 357, 1781–1791 (2002).
    Article Google Scholar
  28. Llano, I., Leresche, N. & Marty, A. Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6, 565–574 (1991).
    Article CAS Google Scholar
  29. Pitler, T. A. & Alger, B. E. Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J. Neurosci. 12, 4122–4132 (1992).
    Article CAS Google Scholar
  30. Kreitzer, A. C. & Regehr, W. G. Retrograde signaling by endocannabinoids. Curr. Opin. Neurobiol. 12, 324–330 (2002).
    Article CAS Google Scholar
  31. Wilson, R. I. & Nicoll, R. A. Endocannabinoid signaling in the brain. Science 296, 678–682 (2002).
    Article ADS CAS Google Scholar
  32. Chavkin, C. Dynorphins are endogenous opioid peptides released from granule cells to act neurohumorly and inhibit excitatory neurotransmission in the hippocampus. Prog. Brain Res. 125, 363–367 (2000).
    Article CAS Google Scholar
  33. Kombian, S. B., Mouginot, D. & Pittman, Q. J. Dendritically released peptides act as retrograde modulators of afferent excitation in the supraoptic nucleus in vitro. Neuron 19, 903–912 (1997).
    Article CAS Google Scholar
  34. Tao, H. W. & Poo, M. Retrograde signaling at central synapses. Proc. Natl Acad. Sci. USA 98, 11009–11015 (2001).
    Article ADS CAS Google Scholar
  35. Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).
    Article ADS CAS Google Scholar
  36. Kreitzer, A. C. & Regehr, W. G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727 (2001).
    Article CAS Google Scholar
  37. Ohno-Shosaku, T., Maejima, T. & Kano, M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29, 729–738 (2001).
    Article CAS Google Scholar
  38. Brenowitz, S. D. & Regehr, W. G. Calcium dependence of retrograde inhibition by endocannabinoids at synapses onto Purkinje cells. J. Neurosci. 23, 6373–6384 (2003).
    Article CAS Google Scholar
  39. Brown, S. P., Brenowitz, S. D. & Regehr, W. G. Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nature Neurosci. 6, 1048–1057 (2003).
    Article CAS Google Scholar
  40. Gerdeman, G. L., Ronesi, J. & Lovinger, D. M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nature Neurosci. 5, 446–451 (2002).
    Article CAS Google Scholar
  41. Chevaleyre, V. & Castillo, P. E. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38, 461–472 (2003).
    Article CAS Google Scholar
  42. Sjostrom, P. J., Turrigiano, G. G. & Nelson, S. B. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641–654 (2003).
    Article Google Scholar
  43. von der Malsburg, C. & Schneider, W. A neural cocktail-party processor. Biol. Cybern. 54, 29–40 (1986).
    Article CAS Google Scholar
  44. Sandberg, A., Tegner, J. & Lansner, A. A working memory model based on fast Hebbian learning. Network 14, 789–802 (2003).
    Article CAS Google Scholar
  45. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).
    Article CAS Google Scholar
  46. Liaw, J. S. & Berger, T. W. Dynamic synapse: a new concept of neural representation and computation. Hippocampus 6, 591–600 (1996).
    Article CAS Google Scholar
  47. Okatan, M. & Grossberg, S. Frequency-dependent synaptic potentiation, depression and spike timing induced by Hebbian pairing in cortical pyramidal neurons. Neural Netw. 13, 699–708 (2000).
    Article CAS Google Scholar
  48. Dittman, J. S., Kreitzer, A. C. & Regehr, W. G. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385 (2000).
    Article CAS Google Scholar
  49. Fuhrmann, G., Segev, I., Markram, H. & Tsodyks, M. Coding of temporal information by activity-dependent synapses. J. Neurophysiol. 87, 140–148 (2002).
    Article Google Scholar
  50. Silberberg, G., Wu, C. & Markram, H. Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit. J. Physiol. 556, 19–27 (2004).
    Article CAS Google Scholar
  51. Markram, H., Gupta, A., Uziel, A., Wang, Y. & Tsodyks, M. Information processing with frequency-dependent synaptic connections. Neurobiol. Learn. Mem. 70, 101–112 (1998).
    Article CAS Google Scholar
  52. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997).
    Article CAS Google Scholar
  53. Hopfield, J. J. & Brody, C. D. Learning rules and network repair in spike-timing-based computation networks. Proc. Natl Acad. Sci. USA 101, 337–342 (2004).
    Article ADS CAS Google Scholar
  54. Markram, H., Pikus, D., Gupta, A. & Tsodyks, M. Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology 37, 489–500 (1998).
    Article CAS Google Scholar
  55. Melamed, O., Gerstner, W., Maass, W., Tsodyks, M. & Markram, H. Coding and learning of behavioral sequences. Trends Neurosci. 27, 11-4; discussion 14-5 (2004).
    Article CAS Google Scholar
  56. Maass, W. & Markram, H. Synapses as dynamic memory buffers. Neural Netw. 15, 155–161 (2002).
    Article Google Scholar
  57. Fortune, E. S. & Rose, G. J. Roles for short-term synaptic plasticity in behavior. J. Physiol. Paris 96, 539–545 (2002).
    Article Google Scholar
  58. O'Donovan, M. J. & Rinzel, J. Synaptic depression: a dynamic regulator of synaptic communication with varied functional roles. Trends Neurosci. 20, 431–433 (1997).
    Article CAS Google Scholar
  59. Goldman, M. S., Maldonado, P. & Abbott, L. F. Redundancy reduction and sustained firing with stochastic depressing synapses. J. Neurosci. 22, 584–591 (2002).
    Article CAS Google Scholar
  60. Lisman, J. E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–43 (1997).
    Article CAS Google Scholar
  61. Thomson, A. M. Presynaptic frequency- and pattern-dependent filtering. J. Comput. Neurosci. 15, 159–202 (2003).
    Article Google Scholar
  62. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997).
    Article ADS CAS Google Scholar
  63. Brenowitz, S., David, J. & Trussell, L. Enhancement of synaptic efficacy by presynaptic GABA(B) receptors. Neuron 20, 135–141 (1998).
    Article CAS Google Scholar
  64. Trussell, L. O., Zhang, S. & Raman, I. M. Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron 10, 1185–1196 (1993).
    Article CAS Google Scholar
  65. Brenowitz, S. & Trussell, L. O. Minimizing synaptic depression by control of release probability. J. Neurosci. 21, 1857–1867 (2001).
    Article CAS Google Scholar
  66. Chance, F. S., Nelson, S. B. & Abbott, L. F. Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18, 4785–4799 (1998).
    Article CAS Google Scholar
  67. Carandini, M., Heeger, D. J. & Senn, W. A synaptic explanation of suppression in visual cortex. J. Neurosci. 22, 10053–10065 (2002).
    Article CAS Google Scholar
  68. Freeman, T. C., Durand, S., Kiper, D. C. & Carandini, M. Suppression without inhibition in visual cortex. Neuron 35, 759–771 (2002).
    Article CAS Google Scholar
  69. Maass, W. & Zador, A. M. Dynamic stochastic synapses as computational units. Neural Comput. 11, 903–917 (1999).
    Article CAS Google Scholar
  70. Zador, A. M. & Dobrunz, L. E. Dynamic synapses in the cortex. Neuron 19, 1–4 (1997).
    Article CAS Google Scholar
  71. Kuba, H., Koyano, K. & Ohmori, H. Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo. Eur. J. Neurosci. 15, 984–990 (2002).
    Article Google Scholar
  72. Cook, D. L., Schwindt, P. C., Grande, L. A. & Spain, W. J. Synaptic depression in the localization of sound. Nature 421, 66–70 (2003).
    Article ADS CAS Google Scholar
  73. Konishi, M. Coding of auditory space. Annu. Rev. Neurosci. 26, 31–55 (2003).
    Article CAS Google Scholar
  74. Grossberg, S. in Brain and Information: Event Related Potentials (eds Karrer, R., Cohen, J. & Tueting, P.) 58–142 (New York Academy of Science, New York, 1994).
    Google Scholar
  75. Chung, S., Li, X. & Nelson, S. B. Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34, 437–446 (2002).
    Article CAS Google Scholar

Download references