TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells (original) (raw)
Hudspeth, A. J. & Corey, D. P. Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl Acad. Sci. USA74, 2407–2411 (1977) ArticleADSCAS Google Scholar
Hudspeth, A. J. Extracellular current flow and the site of transduction by vertebrate hair cells. J. Neurosci.2, 1–10 (1982) ArticleCAS Google Scholar
Corey, D. P. & Hudspeth, A. J. Response latency of vertebrate hair cells. Biophys. J.26, 499–506 (1979) ArticleCAS Google Scholar
Corey, D. P. & Hudspeth, A. J. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci.3, 962–976 (1983) ArticleCAS Google Scholar
Sukharev, S. & Corey, D. P. Mechanosensitive channels: multiplicity of families and gating paradigms. Sci. STKE2004, re4 (2004) PubMed Google Scholar
Corey, D. P. & Hudspeth, A. J. Ionic basis of the receptor potential in a vertebrate hair cell. Nature281, 675–677 (1979) ArticleADSCAS Google Scholar
Gale, J. E., Marcotti, W., Kennedy, H. J., Kros, C. J. & Richardson, G. P. FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J. Neurosci.21, 7013–7025 (2001) ArticleCAS Google Scholar
Meyers, J. R. et al. Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J. Neurosci.23, 4054–4065 (2003) ArticleCAS Google Scholar
García-Añoveros, J., García, J. A., Liu, J.-D. & Corey, D. P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron20, 1231–1241 (1998) Article Google Scholar
Duggan, A., García-Añoveros, J. & Corey, D. P. Insect mechanoreception: What a long, strange TRP it's been. Curr. Biol.10, R384–R387 (2000) ArticleCAS Google Scholar
Clapham, D. E., Montell, C., Schultz, G. & Julius, D. International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol. Rev.55, 591–596 (2003) Article Google Scholar
Corey, D. P. New TRP channels in hearing and mechanosensation. Neuron39, 585–588 (2003) ArticleCAS Google Scholar
Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science287, 2229–2234 (2000) ArticleADSCAS Google Scholar
Sidi, S., Friedrich, R. W. & Nicolson, T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science301, 96–99 (2003) ArticleADSCAS Google Scholar
Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell112, 819–829 (2003) ArticleCAS Google Scholar
Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature427, 260–265 (2004) ArticleADSCAS Google Scholar
Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron41, 849–857 (2004) ArticleCAS Google Scholar
Bermingham, N. A. et al. Math1: an essential gene for the generation of inner ear hair cells. Science284, 1837–1841 (1999) ArticleCAS Google Scholar
Di Palma, F. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl Acad. Sci. USA99, 14994–14999 (2002) ArticleADSCAS Google Scholar
Geleoc, G. S. & Holt, J. R. Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nature Neurosci.6, 1019–1020 (2003) ArticleCAS Google Scholar
Denman-Johnson, K. & Forge, A. Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse. J. Neurocytol.28, 821–835 (1999) ArticleCAS Google Scholar
Hasson, T. et al. Unconventional myosins in inner-ear sensory epithelia. J. Cell Biol.137, 1287–1307 (1997) ArticleCAS Google Scholar
Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature428, 950–955 (2004) ArticleADSCAS Google Scholar
Reiners, J. et al. Differential distribution of harmonin isoforms and their possible role in Usher-1 protein complexes in mammalian photoreceptor cells. Invest. Ophthalmol. Vis. Sci.44, 5006–5015 (2003) Article Google Scholar
Assad, J. A., Shepherd, G. M. & Corey, D. P. Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron7, 985–994 (1991) ArticleCAS Google Scholar
Holt, J. R. et al. Functional expression of exogenous proteins in mammalian sensory hair cells infected with adenoviral vectors. J. Neurophysiol.81, 1881–1888 (1999) ArticleCAS Google Scholar
Hodges, B. L. et al. Multiply deleted [E1, polymerase-, and pTP-] adenovirus vector persists despite deletion of the preterminal protein. J. Gene Med.2, 250–259 (2000) ArticleCAS Google Scholar
Luebke, A. E., Steiger, J. D., Hodges, B. L. & Amalfitano, A. A modified adenovirus can transfect cochlear hair cells in vivo without compromising cochlear function. Gene Ther.8, 789–794 (2001) ArticleCAS Google Scholar
Holt, J. R. Viral-mediated gene transfer to study the molecular physiology of the mammalian inner ear. Audiol. Neurootol.7, 157–160 (2002) ArticleCAS Google Scholar
Farris, H. E., LeBlanc, C. L., Goswami, J. & Ricci, A. J. Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J. Physiol.558, 769–792 (2004) ArticleCAS Google Scholar
Gillespie, P. G. & Corey, D. P. Myosin and adaptation by hair cells. Neuron19, 955–958 (1997) ArticleCAS Google Scholar
Howard, J. & Bechstedt, S. Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr. Biol.14, R224–R226 (2004) ArticleCAS Google Scholar
Howard, J. & Hudspeth, A. J. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron1, 189–199 (1988) ArticleCAS Google Scholar
Sollner, C. et al. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature428, 955–959 (2004) ArticleADS Google Scholar
Michaely, P., Tomchick, D. R., Machius, M. & Anderson, R. G. Crystal structure of a 12 ANK repeat stack from human ankyrinR. EMBO J.21, 6387–6396 (2002) ArticleCAS Google Scholar
Kachar, B., Parakkal, M., Kurc, M., Zhao, Y. & Gillespie, P. G. High-resolution structure of hair-cell tip links. Proc. Natl Acad. Sci. USA97, 13336–13341 (2000) ArticleADSCAS Google Scholar
Ricci, A. J., Wu, Y. C. & Fettiplace, R. The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J. Neurosci.18, 8261–8277 (1998) ArticleCAS Google Scholar
Hudspeth, A. J., Choe, Y., Mehta, A. D. & Martin, P. Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc. Natl Acad. Sci. USA97, 11765–11772 (2000) ArticleADSCAS Google Scholar
Starr, C. J., Kappler, J. A., Chan, D. K., Kollmar, R. & Hudspeth, A. J. Mutation of the zebrafish choroideremia gene encoding Rab escort protein 1 devastates hair cells. Proc. Natl Acad. Sci. USA101, 2572–2577 (2004) ArticleADSCAS Google Scholar
He, T. C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl Acad. Sci. USA95, 2509–2514 (1998) ArticleADSCAS Google Scholar