Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation (original) (raw)
Iizuka, M. & Smith, M. M. Functional consequences of histone modifications. Curr. Opin. Genet. Dev.13, 154–160 (2003) ArticleCAS Google Scholar
Bottomley, M. J. Structures of protein domains that create or recognize histone modifications. EMBO Rep.5, 464–469 (2004) ArticleCAS Google Scholar
Torok, M. S. & Grant, P. A. Histone acetyltransferase proteins contribute to transcriptional processes at multiple levels. Adv. Protein Chem.67, 181–199 (2004) ArticleCAS Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000) ArticleADSCAS Google Scholar
Sims, R. J., Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet.19, 629–639 (2003) ArticleCAS Google Scholar
Pray-Grant, M. G. et al. The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol. Cell. Biol.22, 8774–8786 (2002) ArticleCAS Google Scholar
Grant, P. A. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev.11, 1640–1650 (1997) ArticleCAS Google Scholar
Sterner, D. E., Belotserkovskaya, R. & Berger, S. L. SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription. Proc. Natl Acad. Sci. USA99, 11622–11627 (2002) ArticleADSCAS Google Scholar
Lee, T. I. et al. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature405, 701–704 (2000) ArticleADSCAS Google Scholar
Huisinga, K. L. & Pugh, B. F. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell13, 573–585 (2004) ArticleCAS Google Scholar
Daniel, J. A. et al. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J. Biol. Chem.279, 1867–1871 (2004) ArticleCAS Google Scholar
Henry, K. W. et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev.17, 2648–2663 (2003) ArticleCAS Google Scholar
Woodage, T., Basrai, M. A., Baxevanis, A. D., Hieter, P. & Collins, F. S. Characterization of the CHD family of proteins. Proc. Natl Acad. Sci. USA94, 11472–11477 (1997) ArticleADSCAS Google Scholar
Tran, H. G., Steger, D. J., Iyer, V. R. & Johnson, A. D. The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J.19, 2323–2331 (2000) ArticleCAS Google Scholar
Krogan, N. J. et al. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol. Cell. Biol.22, 6979–6992 (2002) ArticleCAS Google Scholar
Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J.22, 1846–1856 (2003) ArticleCAS Google Scholar
Brehm, A., Tufteland, K. R., Aasland, R. & Becker, P. B. The many colours of chromodomains. Bioessays26, 133–140 (2004) ArticleCAS Google Scholar
Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev.17, 1870–1881 (2003) ArticleCAS Google Scholar
Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev.17, 1823–1828 (2003) ArticleCAS Google Scholar
Stokes, D. G., Tartof, K. D. & Perry, R. P. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl Acad. Sci. USA93, 7137–7142 (1996) ArticleADSCAS Google Scholar
Kelley, D. E., Stokes, D. G. & Perry, R. P. CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma108, 10–25 (1999) ArticleCAS Google Scholar
Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA99, 8695–8700 (2002) ArticleADSCAS Google Scholar
Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature419, 407–411 (2002) ArticleADSCAS Google Scholar
Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev.18, 1263–1271 (2004) Article Google Scholar
Jacobs, S. A. et al. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J.20, 5232–5241 (2001) ArticleCAS Google Scholar
Nielsen, P. R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature416, 103–107 (2002) ArticleADSCAS Google Scholar
Jacobs, S. A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science295, 2080–2083 (2002) ArticleADSCAS Google Scholar
Krebs, J. E., Fry, C. J., Samuels, M. L. & Peterson, C. L. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell102, 587–598 (2000) ArticleCAS Google Scholar
Santos-Rosa, H. et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol. Cell12, 1325–1332 (2003) ArticleCAS Google Scholar
Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell111, 369–379 (2002) ArticleCAS Google Scholar