Different time courses of learning-related activity in the prefrontal cortex and striatum (original) (raw)

References

  1. Petrides, M. in Handbook of Neuropsychology (eds Boller, F. & Grafman, J.) 59–82 (Elsevier, Amsterdam, 1994)
    Google Scholar
  2. Passingham, R. E. The Frontal Lobes and Voluntary Action (Oxford Univ. Press, Oxford, 1995)
    Google Scholar
  3. Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Lippincott-Raven, Philadelphia, 1997)
    Google Scholar
  4. Wise, S. P., Murray, E. A. & Gerfen, C. R. The frontal cortex-basal ganglia system in primates. Crit. Rev. Neurobiol. 10, 317–356 (1996)
    Article CAS Google Scholar
  5. Murray, E. A., Bussey, T. J. & Wise, S. P. Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Exp. Brain Res. 133, 114–129 (2000)
    Article CAS Google Scholar
  6. Tremblay, L., Hollerman, J. R. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate striatum. J. Neurophysiol. 80, 964–977 (1998)
    Article CAS Google Scholar
  7. Asaad, W. F., Rainer, G. & Miller, E. K. Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407 (1998)
    Article CAS Google Scholar
  8. White, I. M. & Wise, S. P. Rule-dependent neuronal activity in the prefrontal cortex. Exp. Brain Res. 126, 315–335 (1999)
    Article CAS Google Scholar
  9. Toni, I. & Passingham, R. E. Prefrontal-basal ganglia pathways are involved in the learning of arbitrary visuomotor associations: a PET study. Exp. Brain Res. 127, 19–32 (1999)
    Article CAS Google Scholar
  10. Lauwereyns, J., Watanabe, K., Coe, B. & Hikosaka, O. A neural correlate of response bias in monkey caudate nucleus. Nature 418, 413–417 (2002)
    Article ADS CAS Google Scholar
  11. Hadj-Bouziane, F. & Boussaoud, D. Neuronal activity in the monkey striatum during conditional visuomotor learning. Exp. Brain Res. 153, 190–196 (2003)
    Article Google Scholar
  12. Schumacher, E. H., Elston, P. A. & D'Esposito, M. Neural evidence for representation-specific response selection. J. Cogn. Neurosci. 15, 1111–1121 (2003)
    Article Google Scholar
  13. Brasted, P. J. & Wise, S. P. Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. Eur. J. Neurosci. 19, 721–740 (2004)
    Article Google Scholar
  14. Hoshi, E. & Tanji, J. Area-selective neuronal activity in the dorsolateral prefrontal cortex for information retrieval and action planning. J. Neurophysiol. 91, 2707–2722 (2004)
    Article Google Scholar
  15. Houk, J. C. & Wise, S. P. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb. Cortex 5, 95–110 (1995)
    Article CAS Google Scholar
  16. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001)
    Article CAS Google Scholar
  17. Graybiel, A. M. The basal ganglia and the initiation of movement. Rev. Neurol. (Paris) 146, 570–574 (1990)
    CAS Google Scholar
  18. Hikosaka, O., Takikawa, Y. & Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80, 953–978 (2000)
    Article CAS Google Scholar
  19. DeLong, M. R. & Georgopoulos, A. P. in Handbook of Physiology—Nervous System (eds Brookhart, J. M. & Mountcastle, V. B.) 1017–1061 (American Physiological Society, Bethesda, 1981)
    Google Scholar
  20. Middleton, F. A. & Strick, P. L. Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cereb. Cortex 12, 926–935 (2002)
    Article Google Scholar
  21. Packard, M. G. & Knowlton, B. J. Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25, 563–593 (2002)
    Article CAS Google Scholar
  22. Graybiel, A. M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998)
    Article CAS Google Scholar
  23. Bar-Gad, I., Morris, G. & Bergman, H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog. Neurobiol. 71, 439–473 (2003)
    Article Google Scholar
  24. Reynolds, J. N., Hyland, B. I. & Wickens, J. R. A cellular mechanism of reward-related learning. Nature 413, 67–70 (2001)
    Article ADS CAS Google Scholar
  25. Wilson, C. J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996)
    Article CAS Google Scholar
  26. O'Reilly, R. C. & Munakata, Y. Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Stimulating the Brain (MIT Press, Cambridge, Massachusetts, 2000)
    Google Scholar
  27. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000)
    Article CAS Google Scholar
  28. McClure, S. M., Berns, G. S. & Montague, P. R. Temporal prediction errors in a passive learning task activate human striatum. Neuron 38, 339–346 (2003)
    Article CAS Google Scholar
  29. Wirth, S. et al. Single neurons in the monkey hippocampus and learning of new associations. Science 300, 1578–1581 (2003)
    Article ADS CAS Google Scholar
  30. Hanes, D. P. & Schall, J. D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996)
    Article ADS CAS Google Scholar

Download references