Structure of the cross-β spine of amyloid-like fibrils (original) (raw)

References

  1. Sipe, J. D. & Cohen, A. S. Review: history of the amyloid fibril. J. Struct. Biol. 130, 88–98 (2000)
    Article CAS PubMed Google Scholar
  2. Cohen, A. S. & Calkins, E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 183, 1202–1203 (1959)
    Article ADS CAS PubMed Google Scholar
  3. Eanes, E. D. & Glenner, G. G. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16, 673–677 (1968)
    Article CAS PubMed Google Scholar
  4. Geddes, A. J., Parker, K. D., Atkins, E. D. & Beighton, E. “Cross-β” conformation in proteins. J. Mol. Biol. 32, 343–358 (1968)
    Article CAS PubMed Google Scholar
  5. Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997)
    Article CAS PubMed Google Scholar
  6. Balbirnie, M., Grothe, R. & Eisenberg, D. S. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid. Proc. Natl Acad. Sci. USA 98, 2375–2380 (2001)
    Article ADS CAS PubMed PubMed Central Google Scholar
  7. Diaz-Avalos, R. et al. Cross-β order and diversity in nanocrystals of an amyloid-forming peptide. J. Mol. Biol. 330, 1165–1175 (2003)
    Article CAS PubMed Google Scholar
  8. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005)
    Article ADS CAS PubMed Google Scholar
  9. Benzinger, T. L. et al. Propagating structure of Alzheimer's β-amyloid(10–35) is parallel β-sheet with residues in exact register. Proc. Natl Acad. Sci. USA 95, 13407–13412 (1998)
    Article ADS CAS PubMed PubMed Central Google Scholar
  10. Petkova, A. T. et al. A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl Acad. Sci. USA 99, 16742–16747 (2002)
    Article ADS CAS PubMed PubMed Central Google Scholar
  11. Jaroniec, C. P., MacPhee, C. E., Astrof, N. S., Dobson, C. M. & Griffin, R. G. Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc. Natl Acad. Sci. USA 99, 16748–16753 (2002)
    Article ADS CAS PubMed PubMed Central Google Scholar
  12. Sunde, M. & Blake, C. C. From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q. Rev. Biophys. 31, 1–39 (1998)
    Article CAS PubMed Google Scholar
  13. Sumner Makin, O., Atkins, E., Sikorski, P., Johansson, J. & Serpell, L. C. Molecular basis for amyloid fibril formation and stability. Proc. Natl Acad. Sci. USA 102, 315–320 (2005)
    Article ADS PubMed PubMed Central Google Scholar
  14. Serag, A. A., Altenbach, C., Gingery, M., Hubbell, W. L. & Yeates, T. O. Identification of a subunit interface in transthyretin amyloid fibrils: evidence for self-assembly from oligomeric building blocks. Biochemistry 40, 9089–9096 (2001)
    Article CAS PubMed Google Scholar
  15. Torok, M. et al. Structural and dynamic features of Alzheimer's Aβ peptide in amyloid fibrils studied by site-directed spin labeling. J. Biol. Chem. 277, 40810–40815 (2002)
    Article PubMed Google Scholar
  16. Jimenez, J. L. et al. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815–821 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  17. Kishimoto, A. et al. β-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. Biochem. Biophys. Res. Commun. 315, 739–745 (2004)
    Article CAS PubMed Google Scholar
  18. Williams, A. D. et al. Mapping Aβ amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842 (2004)
    Article CAS PubMed Google Scholar
  19. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994)
    Article ADS CAS PubMed Google Scholar
  20. Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996)
    Article ADS CAS PubMed Google Scholar
  21. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000)
    Article ADS CAS PubMed Google Scholar
  22. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004)
    Article ADS CAS PubMed Google Scholar
  23. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004)
    Article ADS CAS PubMed Google Scholar
  24. DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998)
    Article CAS PubMed Google Scholar
  25. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000)
    Article CAS PubMed Google Scholar
  26. Jarrett, J. T. & Lansbury, P. T. Jr Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993)
    Article CAS PubMed Google Scholar
  27. Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993)
    Article CAS PubMed Google Scholar
  28. Ivanova, M. I., Sawaya, M. R., Gingery, M., Attinger, A. & Eisenberg, D. An amyloid-forming segment of β2-microglobulin suggests a molecular model for the fibril. Proc. Natl Acad. Sci. USA 101, 10584–10589 (2004)
    Article ADS CAS PubMed PubMed Central Google Scholar
  29. Jimenez, J. L. et al. The protofilament structure of insulin amyloid fibrils. Proc. Natl Acad. Sci. USA 99, 9196–9201 (2002)
    Article ADS CAS PubMed PubMed Central Google Scholar
  30. Perutz, M. F., Johnson, T., Suzuki, M. & Finch, J. T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl Acad. Sci. USA 91, 5355–5358 (1994)
    Article ADS CAS PubMed PubMed Central Google Scholar
  31. Pickersgill, R. W. A primordial structure underlying amyloid. Structure (Camb.) 11, 137–138 (2003)
    Article CAS Google Scholar
  32. Wetzel, R. Ideas of order for amyloid fibril structure. Structure (Camb.) 10, 1031–1036 (2002)
    Article CAS Google Scholar
  33. Perutz, M. F., Finch, J. T., Berriman, J. & Lesk, A. Amyloid fibers are water-filled nanotubes. Proc. Natl Acad. Sci. USA 99, 5591–5595 (2002)
    Article ADS CAS PubMed PubMed Central Google Scholar
  34. Govaerts, C., Wille, H., Prusiner, S. B. & Cohen, F. E. Evidence for assembly of prions with left-handed β-helices into trimers. Proc. Natl Acad. Sci. USA 101, 8342–8347 (2004)
    Article ADS CAS PubMed PubMed Central Google Scholar
  35. Varley, P. et al. Kinetics of folding of the all-β sheet protein interleukin-1 beta. Science 260, 1110–1113 (1993)
    Article ADS CAS PubMed Google Scholar
  36. Sivaraman, T., Kumar, T. K., Chang, D. K., Lin, W. Y. & Yu, C. Events in the kinetic folding pathway of a small, all β-sheet protein. J. Biol. Chem. 273, 10181–10189 (1998)
    Article CAS PubMed Google Scholar
  37. Eisenberg, D., Wesson, M. & Yamashita, M. Interpretation of protein folding and binding with atomic solvation parameters. Chem. Scr. 29A, 217–221 (1989)
    CAS Google Scholar
  38. Coulson, C. A. & Eisenberg, D. Interactions of H2O molecules in ice. Proc. R. Soc. 291, 445–453 (1966)
    ADS CAS Google Scholar
  39. Richardson, J. S. & Richardson, D. C. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl Acad. Sci. USA 99, 2754–2759 (2002)
    Article ADS CAS PubMed PubMed Central Google Scholar
  40. Lopez de la Paz, M. & Serrano, L. Sequence determinants of amyloid fibril formation. Proc. Natl Acad. Sci. USA 101, 87–92 (2004)
    Article ADS CAS PubMed Google Scholar
  41. Tjernberg, L., Hosia, W., Bark, N., Thyberg, J. & Johansson, J. Charge attraction and beta propensity are necessary for amyloid fibril formation from tetrapeptides. J. Biol. Chem. 277, 43243–43246 (2002)
    Article CAS PubMed Google Scholar
  42. Fandrich, M. & Dobson, C. M. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J. 21, 5682–5690 (2002)
    Article PubMed PubMed Central Google Scholar
  43. Riekel, C. Recent developments in micro-diffraction on protein crystals. J. Synchrotron Radiat. 11, 4–6 (2004)
    Article CAS PubMed Google Scholar
  44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
    Article CAS PubMed Google Scholar
  45. Collaborative Computational Project Number 4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
    Article Google Scholar
  46. Jones, T. A., Zou, J. Y.,, Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article PubMed Google Scholar
  47. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)
    Article CAS PubMed Google Scholar
  48. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK — a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)
    Article CAS Google Scholar
  49. Vriend, G. & Sander, C. Quality control of protein models: directional atomic contact analysis. J. Appl. Crystallogr. 26, 47–60 (1993)
    Article CAS Google Scholar
  50. DeLano, W. L. The PyMOL User's Manual (DeLano Scientific, San Carlos, California, 2002)
    Google Scholar

Download references