Correlation of structural elements and infectivity of the HET-s prion (original) (raw)
References
Alper, T., Cramp, W. A., Haig, D. A. & Clarke, M. C. Does the agent of scrapie replicate without nucleic acid? Nature214, 764–766 (1967) ArticleADSCASPubMed Google Scholar
Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science216, 136–144 (1982) ADSCASPubMed Google Scholar
Sparrer, H. E., Santoso, A., Szoka, F. C. Jr & Weissman, J. S. Evidence for the prion hypothesis: induction of the yeast [PSI + ] factor by _in vitro_-converted Sup35 protein. Science289, 595–599 (2000) ArticleADSCASPubMed Google Scholar
King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature428, 319–323 (2004) ArticleADSCASPubMed Google Scholar
Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature428, 323–328 (2004) ArticleADSCASPubMed Google Scholar
Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B. & Saupe, S. J. Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl Acad. Sci. USA99, 7402–7407 (2002) ArticleADSCASPubMedPubMed Central Google Scholar
Glass, N. L. & Kaneko, I. Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot. Cell2, 1–8 (2003) ArticleCASPubMedPubMed Central Google Scholar
Saupe, S. J. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol. Mol. Biol. Rev.64, 489–502 (2000) ArticleCASPubMedPubMed Central Google Scholar
Turcq, B., Deleu, C., Denayrolles, M. & Begueret, J. Two allelic genes responsible for vegetative incompatibility in the fungus Podospora anserina are not essential for cell viability. Mol. Gen. Genet.228, 265–269 (1991) ArticleCASPubMed Google Scholar
Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA94, 9773–9778 (1997) ArticleADSCASPubMedPubMed Central Google Scholar
Dos Reis, S. et al. The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils. J. Biol. Chem.277, 5703–5706 (2002) ArticleCASPubMed Google Scholar
Balguerie, A. et al. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J.22, 2071–2081 (2003) ArticleCASPubMedPubMed Central Google Scholar
Coustou-Linares, V., Maddelein, M. L., Begueret, J. & Saupe, S. J. In vivo aggregation of the HET-s prion protein of the fungus Podospora anserina. Mol. Microbiol.42, 1325–1335 (2001) ArticleCASPubMed Google Scholar
Balguerie, A. et al. The sequences appended to the amyloid core region of the HET-s prion protein determine higher-order aggregate organization in vivo. J. Cell Sci.117, 2599–2610 (2004) ArticleCASPubMed Google Scholar
Hoshino, M. et al. Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange. Nature Struct. Biol.9, 332–336 (2002) ArticleCASPubMed Google Scholar
Lührs, T. et al. The 3D structure of Alzheimer's Aβ(1–42) fibrils. Nature (submitted)
Verel, R., Ernst, M. & Meier, B. H. Adiabatic dipolar recoupling in solid-state NMR: The DREAM scheme. J. Magn. Reson.150, 81–99 (2001) ArticleADSCASPubMed Google Scholar
Siemer, A. B., Ritter, C., Ernst, M., Riek, R. & Meier, B. H. High-resolution solid-state NMR of the prion protein HET-s in its amyloid conformation. Angew. Chem. Int. Edn Engl.44, 2441–2444 (2005) ArticleCAS Google Scholar
Wishart, D. S. & Sykes, B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR4, 171–180 (1994) ArticleCASPubMed Google Scholar
Javitch, J. A., Shi, L. & Liapakis, G. Use of the substituted cysteine accessibility method to study the structure and function of G protein-coupled receptors. Methods Enzymol.343, 137–156 (2002) ArticlePubMed Google Scholar
Tycko, R. Progress towards a molecular-level structural understanding of amyloid fibrils. Curr. Opin. Struct. Biol.14, 96–103 (2004) ArticleCASPubMed Google Scholar
Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science307, 262–265 (2005) ArticleADSCASPubMed Google Scholar
Laws, D. D. et al. Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration. Proc. Natl Acad. Sci. USA98, 11686–11690 (2001) ArticleADSCASPubMedPubMed Central Google Scholar
Yamaguchi, K. et al. Core and heterogeneity of β2-microglobulin amyloid fibrils as revealed by H/D exchange. J. Mol. Biol.338, 559–571 (2004) ArticleCASPubMed Google Scholar
Harper, J. D. & Lansbury, P. T. Jr Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem.66, 385–407 (1997) ArticleCASPubMed Google Scholar
Grzesiek, S. et al. 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-γ. Biochemistry31, 8180–8190 (1992) ArticleCASPubMed Google Scholar
Bracken, C., Palmer, A. G. III & Cavanagh, J. (H)N(COCA)NH and HN(COCA)NH experiments for 1H–15N backbone assignments in 13C/15N-labeled proteins. J. Biomol. NMR9, 94–100 (1997) ArticleCASPubMed Google Scholar
Guntert, P., Dotsch, V., Wider, G. & Wuthrich, K. Processing of multidimensional NMR data with the new software Prosa. J. Biomol. NMR2, 619–629 (1992) Article Google Scholar
Samoson, A., Tuherm, T. & Past, J. Rotation sweep NMR. Chem. Phys. Lett.365, 292–299 (2002) ArticleADSCAS Google Scholar