Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement (original) (raw)
References
Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron16, 1169–1177 (1996) ArticleCAS Google Scholar
Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron16, 1159–1167 (1996) ArticleCAS Google Scholar
Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev.80, 555–592 (2000) ArticleCAS Google Scholar
Ahern, C. A. & Horn, R. Stirring up controversy with a voltage sensor paddle. Trends Neurosci.27, 303–307 (2004) ArticleCAS Google Scholar
Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K(+ ) channel. Nature423, 42–48 (2003) ArticleADSCAS Google Scholar
Guy, H. R. & Seetharamulu, P. Molecular model of the action potential sodium channel. Proc. Natl Acad. Sci. USA83, 508–512 (1986) ArticleADSCAS Google Scholar
Catterall, W. A. Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem.55, 953–985 (1986) ArticleCAS Google Scholar
Jiang, Y. et al. X-ray structure of a voltage-dependent K(+ ) channel. Nature423, 33–41 (2003) ArticleADSCAS Google Scholar
Yang, N., George, A. L. Jr & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron16, 113–122 (1996) Article Google Scholar
Larsson, H. P., Baker, O. S., Dhillon, D. S. & Isacoff, E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron16, 387–397 (1996) ArticleCAS Google Scholar
Starace, D. M., Stefani, E. & Bezanilla, F. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron19, 1319–1327 (1997) ArticleCAS Google Scholar
Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature427, 548–553 (2004) ArticleADSCAS Google Scholar
Cha, A., Snyder, G. E., Selvin, P. R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature402, 809–813 (1999) ArticleADSCAS Google Scholar
Glauner, K. S., Mannuzzu, L. M., Gandhi, C. S. & Isacoff, E. Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature402, 813–817 (1999) ArticleADSCAS Google Scholar
Asamoah, O. K., Wuskell, J. P., Loew, L. M. & Bezanilla, F. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron37, 85–97 (2003) ArticleCAS Google Scholar
Gonzalez, J. E. & Tsien, R. Y. Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys. J.69, 1272–1280 (1995) ArticleADSCAS Google Scholar
Tosteson, M. T. & Tosteson, D. C. The sting. Melittin forms channels in lipid bilayers. Biophys. J.36, 109–116 (1981) ArticleADSCAS Google Scholar
Kempf, C. et al. Voltage-dependent trans-bilayer orientation of melittin. J. Biol. Chem.257, 2469–2476 (1982) CASPubMed Google Scholar
Laine, M. et al. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron39, 467–481 (2003) ArticleCAS Google Scholar
Islas, L. D. & Sigworth, F. J. Electrostatics and the gating pore of Shaker potassium channels. J. Gen. Physiol.117, 69–89 (2001) ArticleCAS Google Scholar
Roux, B. Influence of the membrane potential on the free energy of an intrinsic protein. Biophys. J.73, 2980–2989 (1997) ArticleADSCAS Google Scholar
Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science301, 610–615 (2003) ArticleADSCAS Google Scholar
Boland, L. M., Jurman, M. E. & Yellen, G. Cysteines in the Shaker K+ channel are not essential for channel activity or zinc modulation. Biophys. J.66, 694–699 (1994) ArticleADSCAS Google Scholar
Chanda, B. & Bezanilla, F. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol.120, 629–645 (2002) ArticleCAS Google Scholar
Cha, A. & Bezanilla, F. Structural implications of fluorescence quenching in the Shaker K+ channel. J. Gen. Physiol.112, 391–408 (1998) ArticleCAS Google Scholar
Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0Å resolution. Nature414, 43–48 (2001) ArticleADSCAS Google Scholar
Gonzalez, C., Rosenman, E., Bezanilla, F., Alvarez, O. & Latorre, R. Periodic perturbations in Shaker K+ channel gating kinetics by deletions in the S3–S4 linker. Proc. Natl Acad. Sci. USA98, 9617–9623 (2001) ArticleADSCAS Google Scholar
Brooks, B. R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem.4, 187–217 (1983) ArticleCAS Google Scholar
Nina, M., Beglov, D. & Roux, B. Atomic Born radii for continuum electrostatic calculations based on molecular dynamics free energy simulations. J. Phys. Chem. B101, 5239–5248 (1997) ArticleCAS Google Scholar
Cuello, L. G., Cortes, D. M. & Perozo, E. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science306, 491–495 (2004) ArticleADSCAS Google Scholar
Long, S. B., Campbell, E. B. & MacKinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 7 July 2005 (doi:10.1126/science.1116269)