Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement (original) (raw)

References

  1. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)
    Article CAS Google Scholar
  2. Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)
    Article CAS Google Scholar
  3. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000)
    Article CAS Google Scholar
  4. Ahern, C. A. & Horn, R. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 27, 303–307 (2004)
    Article CAS Google Scholar
  5. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K(+ ) channel. Nature 423, 42–48 (2003)
    Article ADS CAS Google Scholar
  6. Guy, H. R. & Seetharamulu, P. Molecular model of the action potential sodium channel. Proc. Natl Acad. Sci. USA 83, 508–512 (1986)
    Article ADS CAS Google Scholar
  7. Catterall, W. A. Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55, 953–985 (1986)
    Article CAS Google Scholar
  8. Jiang, Y. et al. X-ray structure of a voltage-dependent K(+ ) channel. Nature 423, 33–41 (2003)
    Article ADS CAS Google Scholar
  9. Yang, N., George, A. L. Jr & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996)
    Article Google Scholar
  10. Larsson, H. P., Baker, O. S., Dhillon, D. S. & Isacoff, E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron 16, 387–397 (1996)
    Article CAS Google Scholar
  11. Starace, D. M., Stefani, E. & Bezanilla, F. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron 19, 1319–1327 (1997)
    Article CAS Google Scholar
  12. Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004)
    Article ADS CAS Google Scholar
  13. Cha, A., Snyder, G. E., Selvin, P. R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809–813 (1999)
    Article ADS CAS Google Scholar
  14. Glauner, K. S., Mannuzzu, L. M., Gandhi, C. S. & Isacoff, E. Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402, 813–817 (1999)
    Article ADS CAS Google Scholar
  15. Asamoah, O. K., Wuskell, J. P., Loew, L. M. & Bezanilla, F. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37, 85–97 (2003)
    Article CAS Google Scholar
  16. Gonzalez, J. E. & Tsien, R. Y. Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys. J. 69, 1272–1280 (1995)
    Article ADS CAS Google Scholar
  17. Tosteson, M. T. & Tosteson, D. C. The sting. Melittin forms channels in lipid bilayers. Biophys. J. 36, 109–116 (1981)
    Article ADS CAS Google Scholar
  18. Kempf, C. et al. Voltage-dependent trans-bilayer orientation of melittin. J. Biol. Chem. 257, 2469–2476 (1982)
    CAS PubMed Google Scholar
  19. Laine, M. et al. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39, 467–481 (2003)
    Article CAS Google Scholar
  20. Islas, L. D. & Sigworth, F. J. Electrostatics and the gating pore of Shaker potassium channels. J. Gen. Physiol. 117, 69–89 (2001)
    Article CAS Google Scholar
  21. Roux, B. Influence of the membrane potential on the free energy of an intrinsic protein. Biophys. J. 73, 2980–2989 (1997)
    Article ADS CAS Google Scholar
  22. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003)
    Article ADS CAS Google Scholar
  23. Boland, L. M., Jurman, M. E. & Yellen, G. Cysteines in the Shaker K+ channel are not essential for channel activity or zinc modulation. Biophys. J. 66, 694–699 (1994)
    Article ADS CAS Google Scholar
  24. Chanda, B. & Bezanilla, F. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J. Gen. Physiol. 120, 629–645 (2002)
    Article CAS Google Scholar
  25. Cha, A. & Bezanilla, F. Structural implications of fluorescence quenching in the Shaker K+ channel. J. Gen. Physiol. 112, 391–408 (1998)
    Article CAS Google Scholar
  26. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0Å resolution. Nature 414, 43–48 (2001)
    Article ADS CAS Google Scholar
  27. Gonzalez, C., Rosenman, E., Bezanilla, F., Alvarez, O. & Latorre, R. Periodic perturbations in Shaker K+ channel gating kinetics by deletions in the S3–S4 linker. Proc. Natl Acad. Sci. USA 98, 9617–9623 (2001)
    Article ADS CAS Google Scholar
  28. Brooks, B. R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)
    Article CAS Google Scholar
  29. Nina, M., Beglov, D. & Roux, B. Atomic Born radii for continuum electrostatic calculations based on molecular dynamics free energy simulations. J. Phys. Chem. B 101, 5239–5248 (1997)
    Article CAS Google Scholar
  30. Cuello, L. G., Cortes, D. M. & Perozo, E. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306, 491–495 (2004)
    Article ADS CAS Google Scholar
  31. Long, S. B., Campbell, E. B. & MacKinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 7 July 2005 (doi:10.1126/science.1116269)

Download references