Berrier, C., Coulombe, A., Szabo, I., Zoratti, M. & Ghazi, A. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur. J. Biochem.206, 559–565 (1992) CASPubMed Google Scholar
Martinac, B., Buechner, M., Delcour, A. H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl Acad. Sci. USA84, 2297–2301 (1987) ADSCASPubMedPubMed Central Google Scholar
Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J.18, 1730–1737 (1999) CASPubMedPubMed Central Google Scholar
Martinac, B., Delcour, A. H., Buechner, M., Adler, J. & Kung, C. Advances in Comparative and Environmental Physiology 3–18 (Springer, Heidelberg, 1992) Google Scholar
Delcour, A. H., Martinac, B., Adler, J. & Kung, C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J.56, 631–636 (1989) CASPubMedPubMed Central Google Scholar
Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. & Kung, C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature368, 265–268 (1994) ADSCASPubMed Google Scholar
Sukharev, S. I., Martinac, B., Blount, P. & Kung, C. Functional reconstitution as an assay for biochemical isolation of channel proteins: application to the molecular identification of a bacterial mechanosensitive channel. Methods: A Companion to Methods in Enzymology6, 51–59 (1994) CAS Google Scholar
Blount, P. et al. Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J.15, 4798–4805 (1996) CASPubMedPubMed Central Google Scholar
Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science282, 2220–2226 (1998) ADSCASPubMed Google Scholar
Sukharev, S., Betanzos, M., Chiang, C. S. & Guy, H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature409, 720–724 (2001) ADSCASPubMed Google Scholar
Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature418, 942–948 (2002) ADSCASPubMed Google Scholar
Perozo, E., Kloda, A., Cortes, D. M. & Martinac, B. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct. Biol.9, 696–703 (2002) CASPubMed Google Scholar
Bass, R. B., Strop, P., Barclay, M. & Rees, D. C. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science298, 1582–1587 (2002) ADSCASPubMed Google Scholar
Sukharev, S. I., Blount, P., Martinac, B. & Kung, C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol.59, 633–657 (1997) CASPubMed Google Scholar
Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev.81, 685–740 (2001) CASPubMed Google Scholar
Sukharev, S. & Corey, D. P. Mechanosensitive channels: multiplicity of families and gating paradigms. Sci. STKE doi:10.1126/stke.2332004eg7 (2004)
Blount, P. Molecular mechanisms of mechanosensation: big lessons from small cells. Neuron37, 731–734 (2003) CASPubMed Google Scholar
Sukharev, S. I., Sigurdson, W. J., Kung, C. & Sachs, F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol.113, 525–540 (1999) CASPubMedPubMed Central Google Scholar
Sukharev, S. I., Martinac, B., Arshavsky, V. Y. & Kung, C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J.65, 177–183 (1993) ADSCASPubMedPubMed Central Google Scholar
Ou, X. R., Blount, P., Hoffman, R. J. & Kung, C. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl Acad. Sci. USA95, 11471–11475 (1998) ADSCASPubMedPubMed Central Google Scholar
Maurer, J. A. & Dougherty, D. A. Generation and evaluation of a large mutational library from the Escherichia coli mechanosensitive channel of large conductance, MscL: implications for channel gating and evolutionary design. J. Biol. Chem.278, 21076–21082 (2003) CASPubMed Google Scholar
Cantor, R. S. Lateral pressures in cell membranes: a mechanism for modulation of protein function. J. Phys. Chem.101, 1723–1725 (1997) CAS Google Scholar
Cantor, R. S. The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem. Phys. Lipids101, 45–56 (1999) CASPubMed Google Scholar
Lindahl, E. & Edholm, O. Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J. Chem. Phys.113, 3882–3893 (2000) ADSCAS Google Scholar
Gullingsrud, J. & Schulten, K. Gating of MscL studied by steered molecular dynamics. Biophys. J.85, 2087–2099 (2003) CASPubMedPubMed Central Google Scholar
Wiggins, P. & Phillips, R. Analytic models for mechanotransduction: gating a mechanosensitive channel. Proc. Natl Acad. Sci. USA101, 4071–4076 (2004) ADSCASPubMedPubMed Central Google Scholar
Sheetz, M. P. & Singer, S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl Acad. Sci. USA71, 4457–4461 (1974) ADSCASPubMedPubMed Central Google Scholar
Martinac, B., Adler, J. & Kung, C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature348, 261–263 (1990) ADSCASPubMed Google Scholar
Lundbaek, J. A., Maer, A. M. & Andersen, O. S. Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels. Biochemistry36, 5695–5701 (1997) CASPubMed Google Scholar
Cantor, R. S. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Toxicol. Lett.100–101, 451–458 (1998) PubMed Google Scholar
Patel, A. J., Lazdunski, M. & Honore, E. Lipid and mechano-gated 2P domain K+ channels. Curr. Opin. Cell Biol.13, 422–428 (2001) CASPubMed Google Scholar
Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honore, E. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem.275, 10128–10133 (2000) CASPubMed Google Scholar
Patel, A. J. & Honore, E. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology95, 1013–1021 (2001) CASPubMed Google Scholar
Chemin, J. et al. A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO J.24, 44–53 (2005) CASPubMed Google Scholar
Chemin, J. et al. Lysophosphatidic acid-operated K+ channels. J. Biol. Chem.280, 4415–4421 (2005) CASPubMed Google Scholar
Yang, X. C. & Sachs, F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science243, 1068–1071 (1989) ADSCASPubMed Google Scholar
Hamill, O. P. & McBride, D. W. Jr The pharmacology of mechanogated membrane ion channels. Pharmacol. Rev.48, 231–252 (1996) CASPubMed Google Scholar
Ermakov, Y. A., Averbakh, A. Z., Yusipovich, A. I. & Sukharev, S. Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions. Biophys. J.80, 1851–1862 (2001) CASPubMedPubMed Central Google Scholar
Suchyna, T. M. et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J. Gen. Physiol.115, 583–598 (2000); erratum J. Gen. Physiol.117, 371 (2001) CASPubMedPubMed Central Google Scholar
Guharay, G. & Sachs, F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. (Lond.)352, 685–701 (1984) CAS Google Scholar
Suchyna, T. M. et al. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature430, 235–240 (2004) ADSCASPubMed Google Scholar
Zhang, Y., Gao, F., Popov, V. L., Wen, J. W. & Hamill, O. P. Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes. J. Physiol. (Lond.)523, 117–130 (2000) CAS Google Scholar
Maroto, R. et al. The role of TRPC1 in forming the mechanosensitive cation channel in frog oocytes. Nature Cell Biol.7, 179–185 (2005) CASPubMed Google Scholar
Morris, C. E. & Horn, R. Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science251, 1246–1249 (1991) ADSCASPubMed Google Scholar
Zhang, Y. & Hamill, O. P. On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J. Physiol. (Lond.)523, 101–115 (2000) CAS Google Scholar
Ernstrom, G. G. & Chalfie, M. Genetics of sensory mechanotransduction. Annu. Rev. Genet.36, 411–453 (2002) CASPubMed Google Scholar
Goodman, M. B. & Schwarz, E. M. Transducing touch in Caenorhabditis elegans. Annu. Rev. Physiol.65, 429–452 (2003) CASPubMed Google Scholar
Bianchi, L. et al. The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for nevrosis initiation. Nature Neurosci.7, 1337–1344 (2004) CASPubMed Google Scholar
Goodman, M. B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature415, 1039–1042 (2002) ADSCASPubMed Google Scholar
Chelur, D. S. et al. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature420, 669–673 (2002) ADSCASPubMed Google Scholar
Emtage, L., Gu, G., Hartwieg, E. & Chalfie, M. Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron44, 795–807 (2004) CASPubMed Google Scholar
Zhang, S. et al. MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatic-like domain. Curr. Biol.14, 1888–01896 (2004) Google Scholar
O'Hagan, R., Chalfie, M. & Goodman, M. B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature Neurosci.8, 43–50 (2005) CASPubMed Google Scholar
Tsunoda, S. et al. A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature388, 243–249 (1997) ADSCASPubMed Google Scholar
Montell, C. TRP trapped in fly signalling web. Curr. Opin. Neurobiol.8, 389–397 (1998) CASPubMed Google Scholar
Montell, C., Birnbaumer, L. & Flockerzi, V. The TRP channels, a remarkably functional family. Cell108, 595–598 (2002) CASPubMed Google Scholar
Corey, D. P. New TRP channels in hearing and mechanosensation. Neuron39, 585–588 (2003) CASPubMed Google Scholar
Minke, B., Wu, C.-F. & Pak, W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature258, 84–87 (1975) ADSCASPubMed Google Scholar
Colbert, H. A., Smith, T. L. & Bargmann, C. I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci.17, 8259–8269 (1997) CASPubMedPubMed Central Google Scholar
Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature401, 386–389 (1999) ADSCASPubMed Google Scholar
Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science287, 2229–2234 (2000) ADSCASPubMed Google Scholar
Tracey, W. D. Jr, Wilson, R. I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell113, 261–273 (2003) CASPubMed Google Scholar
Di Palma, F. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl Acad. Sci. USA99, 14994–14999 (2002) ADSCASPubMedPubMed Central Google Scholar
Mochizuki, T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science272, 1339–1342 (1996) ADSCASPubMed Google Scholar
Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem.278, 22664–22668 (2003) CASPubMed Google Scholar
Gao, X., Wu, L. & O'Neil, R. G. Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J. Biol. Chem.278, 27129–27137 (2003) CASPubMed Google Scholar
Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell103, 525–535 (2000) CASPubMedPubMed Central Google Scholar
Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T. D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biol.2, 695–702 (2000) CASPubMed Google Scholar
Tobin, D. et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron35, 307–318 (2002) CASPubMed Google Scholar
Kahn-Kirby, A. et al. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signalling in vivo. Cell119, 889–900 (2004) CASPubMed Google Scholar
Liedtke, W., Tobin, D. M., Bargmann, C. I. & Friedman, J. M. Mammalian TRPV4 (VR-OAC) directs behavioural responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA100 (suppl. 2), 14531–14536 (2003) ADSCASPubMedPubMed Central Google Scholar
Watanabe, H. et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature424, 434–438 (2003) ADSCASPubMed Google Scholar
Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature389, 816–824 (1997) ADSCASPubMed Google Scholar
Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neurosci.5, 856–860 (2002) CASPubMed Google Scholar
Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl Acad. Sci. USA101, 396–401 (2004) ADSCASPubMed Google Scholar
Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila. Nature424, 81–84 (2003) ADSCASPubMed Google Scholar
Gong, S. et al. Two interdependent TRPV chanel subunits, Inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci.24, 9059–9066 (2004) CASPubMedPubMed Central Google Scholar
Sidi, S., Friedrich, R. W. & Nicolson, T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science301, 96–99 (2003) ADSCASPubMed Google Scholar
Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature428, 950–955 (2004) ADSCASPubMed Google Scholar
Sollner, C. et al. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature428, 955–959 (2004) ADSPubMed Google Scholar
Corey, D. P. et al. TRPA1 is a candidate for the mechanosensitive transductin channel of vertebrate hair cells. Nature432, 723–730 (2004) ADSCASPubMed Google Scholar
Howard, J. & Bechstedt, S. Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr. Biol.14, R224–R226 (2004) CASPubMed Google Scholar
Jiang, Y. et al. The open pore conformation of potassium channels. Nature417, 523–526 (2002) ADSCASPubMed Google Scholar
Erler, I., Hirnet, D., Wissenbach, U., Flockerzi, V. & Niemeyer, B. A. Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J. Biol. Chem.279, 34456–34463 (2004) CASPubMed Google Scholar
Hirono, M., Denis, C. S., Richardson, G. P. & Gillespie, P. G. Hair cells require phosphatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron44, 309–320 (2004) CASPubMed Google Scholar
Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell112, 819–829 (2003) CASPubMed Google Scholar
Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature427, 260–265 (2004) ADSCASPubMed Google Scholar
Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron41, 849–857 (2004) CASPubMed Google Scholar
Palmer, C. P. et al. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane. Proc. Natl Acad. Sci. USA98, 7801–7805 (2001) ADSCASPubMedPubMed Central Google Scholar
Zhou, X. L. et al. The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc. Natl Acad. Sci. USA100, 7105–7110 (2003) ADSCASPubMedPubMed Central Google Scholar
Denis, V. & Cyert, M. S. Internal Ca(2 + ) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J. Cell Biol.156, 29–34 (2002) CASPubMedPubMed Central Google Scholar
Zhou, X.-L., Loukin, S. H., Coria, R., Kung, C. & Saimi, Y. Heterologously expressed fungal transient receptor potential channels retain mechanosensitivity in vitro and osmotic response in vivo. Eur. Biophys. J.34, 413–422 (2005) CASPubMed Google Scholar
Kung, C., Saimi, Y. & Martinac, B. Current Topics in Membranes and Transport 145–153 (Academic, New York, 1990) Google Scholar
Apostle, H. G. Aristotle's On The Soul (De Anima) (Translation) 42–43 (Peripatetic, Crinnell, Iowa, 1981) Google Scholar
Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature430, 748–754 (2004) ADSCASPubMed Google Scholar