Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters (original) (raw)

References

  1. Vanhatalo, S. & Soinila, S. The concept of chemical neurotransmission — variations on the theme. Ann. Med. 19, 151–158 (1998)
    Article Google Scholar
  2. Masson, J., Sagne, C., Hamon, M. & Mestikawy, S. E. Neurotransmitter transporters in the central nervous system. Pharm. Rev. 51, 439–464 (1999)
    CAS PubMed Google Scholar
  3. Hahn, M. K. & Blakely, R. D. Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. Pharmacogenomics J. 2, 217–235 (2002)
    Article CAS Google Scholar
  4. Richerson, G. B. & Wu, Y. Role of the GABA transporter in epilepsy. Adv. Exp. Med. Biol. 548, 76–91 (2004)
    Article CAS Google Scholar
  5. Amara, S. G. & Sonders, M. S. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend. 51, 87–96 (1998)
    Article CAS Google Scholar
  6. Krogsgaard-Larsen, P., Frolund, B. & Frydenvang, K. GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects. Curr. Pharm. Des. 6, 1193–1209 (2000)
    Article CAS Google Scholar
  7. Barker, E. L. & Blakely, R. D. in Psychopharmacology—the Fourth Generation of Progress (eds Bloom, F. E. & Kupfer, D. J.) (Raven Press, New York, 2000)
    Google Scholar
  8. Guastella, J. et al. Cloning and expression of a rat brain GABA transporter. Science 249, 1303–1306 (1990)
    Article ADS CAS Google Scholar
  9. Nelson, N. The family of Na+/Cl--dependent neurotransmitter transporters. J. Neurochem. 71, 1785–1803 (1998)
    Article CAS Google Scholar
  10. Torres, G. E., Gainetdinov, R. R. & Caron, M. G. Plasma membrane monoamine transporters: structure, regulation, and function. Nature Rev. Neurosci. 4, 13–25 (2003)
    Article CAS Google Scholar
  11. Chen, J. G., Liu-Chen, S. & Rudnick, G. Determination of external loop topology in the serotonin transporter by site-directed chemical labeling. J. Biol. Chem. 273, 12675–12681 (1998)
    Article CAS Google Scholar
  12. Bismuth, Y., Kavanaugh, M. P. & Kanner, B. I. Tyrosine 140 of the γ-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J. Biol. Chem. 272, 16096–16102 (1997)
    Article CAS Google Scholar
  13. Chen, J. G., Sachpatzidis, A. & Rudnick, G. The third transmembrane domain of the serotonin transporter contains residues associated with substrate and cocaine binding. J. Biol. Chem. 272, 28321–28327 (1997)
    Article CAS Google Scholar
  14. Cao, Y., Li, M., Mager, S. & Lester, H. A. Amino acid residues that control pH modulation of transport-associated current in mammalian serotonin transporters. J. Neurosci. 18, 7739–7749 (1998)
    Article CAS Google Scholar
  15. Rudnick, G. in Neurotransmitter Transporters: Structure, Function, and Regulation (ed. Reith, E. A.) 25–52 (Humana Press, Totowa, New Jersey, 2002)
    Book Google Scholar
  16. Kavanaugh, M. P., Arriza, J. L., North, R. A. & Amara, S. G. Electrogenic uptake of γ-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J. Biol. Chem. 267, 22007–22009 (1992)
    CAS PubMed Google Scholar
  17. Roux, M. & Supplisson, S. Neuronal and glial glycine transporters have different stoichiometries. Neuron 25, 373–383 (2000)
    Article CAS Google Scholar
  18. Androutsellis-Theotokis, A. et al. Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters. J. Biol. Chem. 278, 12703–12709 (2003)
    Article CAS Google Scholar
  19. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991)
    Article ADS CAS Google Scholar
  20. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000)
    Article ADS CAS Google Scholar
  21. Hirai, T. et al. Three-dimensional structure of a bacterial oxalate transporter. Nature Struct. Biol. 9, 597–600 (2002)
    CAS PubMed Google Scholar
  22. Chen, J. G., Liu-Chen, S. & Rudnick, G. External cysteine residues in the serotonin transporter. Biochemistry 36, 1479–1486 (1997)
    Article CAS Google Scholar
  23. Wang, J. B., Moriwaki, A. & Uhl, G. R. Dopamine transporter cysteine mutants: second extracellular loop cysteines are required for transporter expression. J. Neurochem. 64, 1416–1419 (1995)
    Article CAS Google Scholar
  24. Just, H., Sitte, H. H., Schmid, J. A., Freissmuth, M. & Kudlacek, O. Identification of an additional interaction domain in transmembrane domains 11 and 12 that supports oligomer formation in the human serotonin transporter. J. Biol. Chem. 279, 6650–6657 (2004)
    Article CAS Google Scholar
  25. Sitte, H. H., Farhan, H. & Javitch, J. A. Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol. Interv. 4, 38–47 (2004)
    Article CAS Google Scholar
  26. Ponce, J., Biton, B., Benavides, J., Avenet, P. & Aragon, C. Transmembrane domain III plays an important role in ion binding and permeation in the glycine transporter GLYT2. J. Biol. Chem. 275, 13856–13862 (2000)
    Article CAS Google Scholar
  27. Keshet, G. I. et al. Glutamate-101 is critical for the function of the sodium and chloride-coupled GABA transporter GAT-1. FEBS Lett. 371, 39–42 (1995)
    Article CAS Google Scholar
  28. Nayal, M. & Di Cera, E. Valence screening of water in protein crystals reveals potential Na+ binding sites. J. Mol. Biol. 256, 228–234 (1996)
    Article CAS Google Scholar
  29. Harding, M. M. Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr. D 58, 872–874 (2002)
    Article Google Scholar
  30. Mager, S. et al. Ion binding and permeation at the GABA transporter GAT1. J. Neurosci. 16, 5405–5414 (1996)
    Article CAS Google Scholar
  31. Penado, K. M., Rudnick, G. & Stephan, M. M. Critical amino acid residues in transmembrane span 7 of the serotonin transporter identified by random mutagenesis. J. Biol. Chem. 273, 28098–28106 (1998)
    Article CAS Google Scholar
  32. Chen, N. & Reith, M. E. Na+ and the substrate permeation pathway in dopamine transporters. Eur. J. Pharmacol. 479, 213–221 (2003)
    Article CAS Google Scholar
  33. Mari, S. A. et al. Aspartate 338 contributes to the cationic specificity and to driver-amino acid coupling in the insect cotransporter KAAT1. Cell. Mol. Life Sci. 61, 243–256 (2004)
    Article CAS Google Scholar
  34. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966)
    Article ADS CAS Google Scholar
  35. Pantanowitz, S., Bendahan, A. & Kanner, B. I. Only one of the charged amino acids located in the transmembrane alpha-helices of the γ-aminobutyric acid transporter (subtype A) is essential for its activity. J. Biol. Chem. 268, 3222–3225 (1993)
    CAS PubMed Google Scholar
  36. Bennett, E. R., Su, H. & Kanner, B. I. Mutation of arginine 44 of GAT-1, a (Na+ + Cl-)-coupled γ-aminobutyric acid transporter from rat brain, impairs net flux but not exchange. J. Biol. Chem. 275, 34106–34113 (2000)
    Article CAS Google Scholar
  37. Loland, C. J., Granas, C., Javitch, J. A. & Gether, U. Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding. J. Biol. Chem. 279, 3228–3238 (2004)
    Article CAS Google Scholar
  38. Loland, C. J., Norregaard, L., Litman, T. & Gether, U. Generation of an activating Zn2+ switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. Proc. Natl Acad. Sci. USA 99, 1683–1688 (2002)
    Article ADS CAS Google Scholar
  39. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002)
    Article ADS CAS Google Scholar
  40. Lopez-Corcuera, B., Nunez, E., Martinez-Maza, R., Geerlings, A. & Aragon, C. Substrate-induced conformational changes of extracellular loop 1 in the glycine transporter GLYT2. J. Biol. Chem. 276, 43463–43470 (2001)
    Article CAS Google Scholar
  41. Sato, Y., Zhang, Y. W., Androutsellis-Theotokis, A. & Rudnick, G. Analysis of transmembrane domain 2 of rat serotonin transporter by cysteine scanning mutagenesis. J. Biol. Chem. 279, 22926–22933 (2004)
    Article CAS Google Scholar
  42. Stephan, M. M., Chen, M. A., Penado, K. M. & Rudnick, G. An extracellular loop region of the serotonin transporter may be involved in the translocation mechanism. Biochemistry 36, 1322–1328 (1997)
    Article CAS Google Scholar
  43. Smicun, Y., Campbell, S. D., Chen, M. A., Gu, H. & Rudnick, G. The role of external loop regions in serotonin transport. J. Biol. Chem. 274, 36058–36064 (1999)
    Article CAS Google Scholar
  44. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004)
    Article ADS CAS Google Scholar
  45. Guerrero, S. A., Hecht, H. J., Hofmann, B., Biebl, H. & Singh, M. Production of selenomethionine-labelled proteins using simplified culture conditions and generally applicable host/vector systems. Appl. Microbiol. Biotechnol. 56, 718–723 (2001)
    Article CAS Google Scholar
  46. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)
    Article CAS Google Scholar
  47. Collaborative Computational Project, No. 4, The CCP4 suite: program for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
    Article Google Scholar
  48. Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)
    Article CAS Google Scholar
  49. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for maclomolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article Google Scholar
  50. Yernool, D., Boudker, O., Folta-Stogniew, E. & Gouaux, E. Trimeric subunit stoichiometry of the glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus. Biochemistry 42, 12981–12988 (2003)
    Article CAS Google Scholar

Download references