Structure of the CED-4–CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans (original) (raw)

References

  1. Horvitz, H. R. Worms, Life, and Death (Nobel Lecture). ChemBioChem 4, 697–711 (2003)
    Article CAS PubMed Google Scholar
  2. Horvitz, H. R. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 59, 1701–1706 (1999)
    Google Scholar
  3. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993)
    Article CAS PubMed Google Scholar
  4. Xue, D., Shaham, S. & Horvitz, H. R. The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev. 10, 1073–1083 (1996)
    Article CAS PubMed Google Scholar
  5. Thornberry, N. A. & Lazebnik, Y. Caspases: Enemies within. Science 281, 1312–1316 (1998)
    Article CAS PubMed Google Scholar
  6. Yuan, J. & Horvitz, H. R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320 (1992)
    CAS PubMed Google Scholar
  7. Chinnaiyan, A. M., O'Rourke, K., Lane, B. R. & Dixit, V. M. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275, 1122–1126 (1997)
    Article CAS PubMed Google Scholar
  8. Irmler, M., Hofmann, K., Vaux, D. & Tschopp, J. Direct physical interaction between the Caenorhabditis elegans ‘death proteins’ CED-3 and CED-4. FEBS Lett. 406, 189–190 (1997)
    Article CAS PubMed Google Scholar
  9. Seshagiri, S. & Miller, L. K. Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis. Curr. Biol. 7, 455–460 (1997)
    Article CAS PubMed Google Scholar
  10. Wu, D., Wallen, H. D. & Nunez, G. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 275, 1126–1129 (1997)
    Article CAS PubMed Google Scholar
  11. Yang, X., Chang, H. Y. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355–1357 (1998)
    Article ADS CAS PubMed Google Scholar
  12. Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994)
    Article CAS PubMed Google Scholar
  13. Chen, F. et al. Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death. Science 287, 1485–1489 (2000)
    Article ADS CAS PubMed Google Scholar
  14. James, C., Gschmeissner, S., Fraser, A. & Evan, G. I. CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9. Curr. Biol. 7, 246–252 (1997)
    Article CAS PubMed Google Scholar
  15. Spector, M. S., Desnoyers, S., Hoeppner, D. J. & Hengartner, M. O. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385, 653–656 (1997)
    Article ADS CAS PubMed Google Scholar
  16. Conradt, B. & Horvitz, H. R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529 (1998)
    Article CAS PubMed Google Scholar
  17. del Peso, L., Gonzalez, V. M. & Nunez, G. Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation. J. Biol. Chem. 273, 33495–33500 (1998)
    Article CAS PubMed Google Scholar
  18. del Peso, L., Gonzalez, V. M., Inohara, N., Ellis, R. E. & Nunez, G. Disruption of the CED-9·CED-4 complex by EGL-1 is a critical step for programmed cell death in Caenorhabditis elegans. J. Biol. Chem. 275, 27205–27211 (2000)
    CAS PubMed Google Scholar
  19. Parrish, J., Metters, H., Chen, L. & Xue, D. Demonstration of the in vivo interaction of key cell death regulators by structure-based design of second-site suppressors. Proc. Natl Acad. Sci. USA 97, 11916–11921 (2000)
    Article ADS CAS PubMed PubMed Central Google Scholar
  20. Yan, N. et al. Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol. Cell 15, 999–1006 (2004)
    Article CAS PubMed Google Scholar
  21. Riedl, S. J., Li, W., Chao, Y., Schwarzenbacher, R. & Shi, Y. Structure of the apoptotic protease activating factor 1 bound to ADP. Nature 434, 926–933 (2005)
    Article ADS CAS PubMed Google Scholar
  22. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997)
    Article CAS PubMed Google Scholar
  23. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)
    Article CAS PubMed Google Scholar
  24. Liu, J. et al. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol. Cell 6, 637–648 (2000)
    Article CAS PubMed Google Scholar
  25. Singleton, M. R. et al. Conformational changes induced by nucleotide binding in Cdc6/ORC from Aeropyrum pernix. J. Mol. Biol. 343, 547–557 (2004)
    Article CAS PubMed Google Scholar
  26. Lupas, A. N. & Martin, J. AAA proteins. Curr. Opin. Struct. Biol. 12, 746–753 (2002)
    Article CAS PubMed Google Scholar
  27. Jaroszewski, L., Rychlewski, L., Reed, J. C. & Godzik, A. ATP-activated oligomerization as a mechanism for apoptosis regulation: fold and mechanism prediction for CED-4. Proteins 39, 197–203 (2000)
    Article CAS PubMed Google Scholar
  28. Woo, J. S. et al. Unique structural features of a BCL-2 family protein CED-9 and biophysical characterization of CED-9/EGL-1 interactions. Cell Death Differ. 10, 1310–1325 (2003)
    Article CAS PubMed Google Scholar
  29. Hugunin, M., Quintal, L. J., Mankovich, J. A. & Ghayur, T. Protease activity of in vitro transcribed and translated Caenorhabditis elegans cell death gene (ced-3) product. J. Biol. Chem. 271, 3517–3522 (1996)
    Article CAS PubMed Google Scholar
  30. Shaham, S. & Horvitz, H. R. An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 86, 201–208 (1996)
    Article CAS PubMed Google Scholar
  31. Ottilie, S. et al. Mutational analysis of the interacting cell death regulators CED-9 and CED-4. Cell Death Differ. 4, 526–533 (1997)
    Article CAS PubMed Google Scholar
  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
    Article CAS PubMed Google Scholar
  33. Uson, I. & Sheldrick, G. M. Advance in direct methods for protein crystallography. Curr. Opin. Struct. Biol. 9, 643–648 (1999)
    Article CAS PubMed Google Scholar
  34. Hao, Q. ABS: A program to determine absolute configuration and evaluate anomalous scatter substructure. J. Appl. Crystallogr. 37, 498–499 (2004)
    Article CAS Google Scholar
  35. Terwilliger, T. C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  36. Abrahams, J. P. & Leslie, A. G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996)
    Article CAS PubMed Google Scholar
  37. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article PubMed Google Scholar
  38. Brunger, A. T. et al. Crystallography and NMR System: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article CAS PubMed Google Scholar
  39. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)
    Article Google Scholar
  40. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991)
    Article CAS PubMed Google Scholar

Download references