Variations in earthquake-size distribution across different stress regimes (original) (raw)

Nature volume 437, pages 539–542 (2005)Cite this article

Abstract

The earthquake size distribution follows, in most instances, a power law1,2, with the slope of this power law, the ‘b value’, commonly used to describe the relative occurrence of large and small events (a high b value indicates a larger proportion of small earthquakes, and vice versa). Statistically significant variations of b values have been measured in laboratory experiments, mines and various tectonic regimes such as subducting slabs, near magma chambers, along fault zones and in aftershock zones3. However, it has remained uncertain whether these differences are due to differing stress regimes, as it was questionable that samples in small volumes (such as in laboratory specimens, mines and the shallow Earth's crust) are representative of earthquakes in general. Given the lack of physical understanding of these differences, the observation that b values approach the constant 1 if large volumes are sampled4 was interpreted to indicate that b = 1 is a universal constant for earthquakes in general5. Here we show that the b value varies systematically for different styles of faulting. We find that normal faulting events have the highest b values, thrust events the lowest and strike-slip events intermediate values. Given that thrust faults tend to be under higher stress than normal faults we infer that the b value acts as a stress meter that depends inversely on differential stress.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Ishimoto, M. & Iida, K. Observations of earthquakes registered with the microseismograph constructed recently. Bull. Earthquake Res. Inst. Tokyo Univ. 17, 443–478 (1939)
    Google Scholar
  2. Gutenberg, B. & Richter, C. F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34, 185–188 (1944)
    Google Scholar
  3. Wiemer, S. & Wyss, M. Mapping spatial variability of the frequency–magnitude distribution of earthquakes. Adv. Geophys. 45, 259–302 (2002)
    Article ADS Google Scholar
  4. Frohlich, C. & Davis, S. D. Teleseismic b values; or, much ado about 1.0. J. Geophys. Res. 98, 631–644 (1993)
    Article ADS Google Scholar
  5. Kagan, Y. Y. Universality of the seismic moment–frequency relation. Pure Appl. Geophys. 155, 537–574 (1999)
    Article ADS Google Scholar
  6. Bender, B. Maximum likelihood estimation of b values for magnitude grouped data. Bull. Seismol. Soc. Am. 73, 831–851 (1983)
    Google Scholar
  7. Shi, Y. & Bolt, B. A. The standard error of the magnitude–frequency _b_-value. Bull. Seismol. Soc. Am. 72, 1677–1687 (1982)
    Google Scholar
  8. Utsu, T. Report of the Joint Research Institute for Statistical Mathematics Vol. 34, 139–157 (Institute for Statistical Mathematics, Tokyo, 1992)
    Google Scholar
  9. Hauksson, E. Crustal structure and seismicity distribution adjacent to the Pacific and North America plate boundary in southern California. J. Geophys. Res. 105, 13875–13903 (2000)
    Article ADS Google Scholar
  10. Mogi, K. Magnitude–frequency relations for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bull. Earthquake Res. Inst. Univ. Tokyo 40, 831–853 (1962)
    Google Scholar
  11. Scholz, C. H. The frequency–magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am. 58, 399–415 (1968)
    Google Scholar
  12. Wyss, M. Towards a physical understanding of the earthquake frequency distribution. Geophys. J. R. Astron. Soc. 31, 341–359 (1973)
    Article ADS Google Scholar
  13. Mori, J. & Abercrombie, R. E. Depth dependence of earthquake frequency–magnitude distributions in California: Implications for rupture initiation. J. Geophys. Res. 102, 15081–15090 (1997)
    Article ADS Google Scholar
  14. Gerstenberger, M., Wiemer, S. & Giardini, D. A systematic test of the hypothesis that the b value varies with depth in California. Geophys. Res. Lett. 28, 57–60 (2001)
    Article ADS Google Scholar
  15. Wyss, M. & Matsumura, S. Most likely locations of large earthquakes in the Kanto and Tokai areas, Japan, based on the local recurrence times. Physics of the Earth and Planetary Interiors 131, 173–184 (2002)
    Article ADS Google Scholar
  16. Kagan, Y. Y. Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int. 148, 520–541 (2002)
    Article ADS Google Scholar
  17. Amitrano, D. Brittle–ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value. J. Geophys. Res., B2044 (2003) (doi:10.1029/2001JB000680)
  18. Urbancic, T. I., Trifu, C. I., Long, J. M. & Young, R. P. Space-time correlations of _b_-values with stress release. Pure Appl. Geophys. 139, 449–462 (1992)
    Article ADS Google Scholar
  19. Wiemer, S., McNutt, S. R. & Wyss, M. Temporal and three-dimensional spatial analysis of the frequency-magnitude distribution near Long Valley caldera. California. Geophys. J. Int. 134, 409–421 (1998)
    Article ADS Google Scholar
  20. Hauksson, E. Earthquakes, faulting, and stress in the Los Angeles basin. J. Geophys. Res. 95, 15365–15394 (1990)
    Article ADS Google Scholar
  21. Amelung, F. & King, G. The difference between earthquake scaling laws for creeping and non-creeping faults. Geophys. Res. Lett. 24, 507–510 (1997)
    Article ADS Google Scholar
  22. Wiemer, S. & Wyss, M. Mapping the frequency–magnitude distribution in asperities: An improved technique to calculate recurrence times? J. Geophys. Res. 102, 15115–15128 (1997)
    Article ADS Google Scholar
  23. Schorlemmer, D., Wiemer, S. & Wyss, M. Earthquake statistics at Parkfield: 1. Stationarity of _b_-values. J. Geophys. Res. 109, B12307 (2004) (doi:10.1029/2004JB003234)
    Article ADS Google Scholar
  24. Schorlemmer, D. & Wiemer, S. Microseismicity data forecast rupture area. Nature 434, 1086 (2005)
    Article ADS CAS Google Scholar
  25. Huang, J. & Turcotte, D. L. Fractal distributions of stress and strength and variations of _b_-value. Earth Planet. Sci. Lett. 91, 223–230 (1988)
    Article ADS Google Scholar
  26. Smith, W. D. The _b_-values as an earthquake precursor. Nature 289, 136–139 (1981)
    Article ADS Google Scholar
  27. Lei, X. et al. Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock. J. Struct. Geol. 26, 247–258 (2004)
    Article ADS Google Scholar
  28. Oglesby, D. D., Archuleta, R. J. & Nielsen, S. B. Dynamics of dip-slip faulting: Explorations in two dimensions. J. Geophys. Res. 105, 13643–13653 (2000)
    Article ADS Google Scholar

Download references

Acknowledgements

We thank E. Hauksson, D. Giardini, M. Mai, M. Gerstenberger, D. Jackson, J. Woessner and G. Hillers for discussions. We thank the Northern California Seismic Network, US Geological Survey, Menlo Park, and the Berkeley Seismological Laboratory, University of California, Berkeley, for the catalogue including phase data, and the National Research Institute for Earth Science and Disaster Prevention for mechanism solutions of the Kanto-Tokai area.

Author information

Authors and Affiliations

  1. Swiss Seismological Service, ETH Zürich, ETH Hönggerberg, Schafmattstr. 30, 8093, Zürich, Switzerland
    Danijel Schorlemmer & Stefan Wiemer
  2. World Agency of Planetary Monitoring and Earthquake Risk Reduction, Route de Jargonnant 2, 1207, Genève, Switzerland
    Max Wyss

Authors

  1. Danijel Schorlemmer
    You can also search for this author inPubMed Google Scholar
  2. Stefan Wiemer
    You can also search for this author inPubMed Google Scholar
  3. Max Wyss
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toDanijel Schorlemmer.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

About this article

Cite this article

Schorlemmer, D., Wiemer, S. & Wyss, M. Variations in earthquake-size distribution across different stress regimes.Nature 437, 539–542 (2005). https://doi.org/10.1038/nature04094

Download citation