Rapid developmental switch in the mechanisms driving early cortical columnar networks (original) (raw)

References

  1. Katz, L. C. & Crowley, J. C. Development of cortical circuits: lessons from ocular dominance columns. Nature Rev. Neurosci. 3, 34–42 (2002)
    Article CAS Google Scholar
  2. Yuste, R., Peinado, A. & Katz, L. C. Neuronal domains in developing neocortex. Science 257, 665–669 (1992)
    Article ADS CAS Google Scholar
  3. Garaschuk, O., Linn, J., Eilers, J. & Konnerth, A. Large-scale oscillatory calcium waves in the immature cortex. Nature Neurosci. 3, 452–459 (2000)
    Article CAS Google Scholar
  4. Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432, 758–761 (2004)
    Article ADS CAS Google Scholar
  5. Peinado, A. Traveling slow waves of neural activity: a novel form of network activity in developing neocortex. J. Neurosci. 20, NIL1–NIL6 (2000)
    Article MathSciNet Google Scholar
  6. Flint, A. C., Dammerman, R. S. & Kriegstein, A. R. Endogenous activation of metabotropic glutamate receptors in neocortical development causes neuronal calcium oscillations. Proc. Natl Acad. Sci. USA 96, 12144–12149 (1999)
    Article ADS CAS Google Scholar
  7. Price, D. J., Aslam, S., Tasker, L. & Gillies, K. Fates of the earliest generated cells in the developing murine neocortex. J. Comp. Neurol. 377, 414–422 (1997)
    Article CAS Google Scholar
  8. Kilb, W. & Luhmann, H. J. Carbachol-induced network oscillations in the intact cerebral cortex of the newborn rat. Cereb. Cortex 13, 409–421 (2003)
    Article Google Scholar
  9. Cruikshank, S. J. et al. Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc. Natl Acad. Sci. USA 101, 12364–12369 (2004)
    Article ADS CAS Google Scholar
  10. Yuste, R., Nelson, D. A., Rubin, W. W. & Katz, L. C. Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron 14, 7–17 (1995)
    Article CAS Google Scholar
  11. Voigt, T., Opitz, T. & De Lima, A. D. Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons. J. Neurosci. 21, 8895–8905 (2001)
    Article CAS Google Scholar
  12. Hanganu, I. L., Kilb, W. & Luhmann, H. J. Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J. Neurosci. 22, 7165–7176 (2002)
    Article CAS Google Scholar
  13. Friauf, E., McConnell, S. K. & Shatz, C. J. Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. J. Neurosci. 10, 2601–2613 (1990)
    Article CAS Google Scholar
  14. Hanganu, I. L. & Luhmann, H. J. Functional nicotinic acetylcholine receptors on subplate neurons in neonatal rat somatosensory cortex. J. Neurophysiol. 92, 189–198 (2004)
    Article CAS Google Scholar
  15. Mechawar, N. & Descarries, L. The cholinergic innervation develops early and rapidly in the rat cerebral cortex: A quantitative immunocytochemical study. Neuroscience 108, 555–567 (2001)
    Article CAS Google Scholar
  16. Traub, R. D., Bibbig, A., LeBeau, F. E., Buhl, E. H. & Whittington, M. A. Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Annu. Rev. Neurosci. 27, 247–278 (2004)
    Article CAS Google Scholar
  17. Beierlein, M., Gibson, J. R. & Connors, B. W. A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nature Neurosci. 3, 904–910 (2000)
    Article CAS Google Scholar
  18. Kandler, K. & Katz, L. C. Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication. J. Neurosci. 18, 1419–1427 (1998)
    Article CAS Google Scholar
  19. Montoro, R. J. & Yuste, R. Gap junctions in developing neocortex: a review. Brain Res. Rev. 47, 216–226 (2004)
    Article CAS Google Scholar
  20. Corlew, R., Bosma, M. M. & Moody, W. J. Spontaneous, synchronous electrical activity in neonatal mouse cortical neurons. J. Physiol. (Lond.) 560, 377–390 (2004)
    Article CAS Google Scholar
  21. Connors, B. W., Bernardo, L. S. & Prince, D. A. Coupling between neurons of the developing rat neocortex. J. Neurosci. 3, 773–782 (1983)
    Article CAS Google Scholar
  22. Ghosh, A. & Shatz, C. J. Involvement of subplate neurons in the formation of ocular dominance columns. Science 255, 1441–1443 (1992)
    Article ADS CAS Google Scholar
  23. Kanold, P. O., Kara, P., Reid, R. C. & Shatz, C. J. Role of subplate neurons in functional maturation of visual cortical columns. Science 301, 521–525 (2003)
    Article ADS CAS Google Scholar
  24. Fox, K., Schlaggar, B. L., Glazewski, S. & O'Leary, D. D. M. Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. Proc. Natl Acad. Sci. USA 93, 5584–5589 (1996)
    Article ADS CAS Google Scholar
  25. Lee, L. J., Iwasato, T., Itohara, S. & Erzurumlu, R. S. Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J. Comp. Neurol. 485, 280–292 (2005)
    Article CAS Google Scholar
  26. Singer, W. Development and plasticity of cortical processing architectures. Science 270, 758–764 (1995)
    Article ADS CAS Google Scholar
  27. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)
    Article ADS Google Scholar
  28. Hanganu, I. L., Kilb, W. & Luhmann, H. J. Spontaneous synaptic activity of subplate neurons in neonatal rat somatosensory cortex. Cereb. Cortex 11, 400–410 (2001)
    Article CAS Google Scholar
  29. LoTurco, J. J. & Kriegstein, A. R. Clusters of coupled neuroblasts in embryonic neocortex. Science 252, 563–566 (1991)
    Article ADS CAS Google Scholar
  30. Rice, F. L. & Van der Loos, H. Development of the barrels and barrel field in the somatosensory cortex of the mouse. J. Comp. Neurol. 171, 545–560 (1977)
    Article CAS Google Scholar

Download references