Structural mechanism of plant aquaporin gating (original) (raw)

References

  1. Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387 (1992)
    Article ADS CAS Google Scholar
  2. Johansson, I., Karlsson, M., Johanson, U., Larsson, C. & Kjellbom, P. The role of aquaporins in cellular and whole plant water balance. Biochim. Biophys. Acta 1465, 324–342 (2000)
    Article CAS Google Scholar
  3. Agre, P. & Kozono, D. Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett. 555, 72–78 (2003)
    Article CAS Google Scholar
  4. King, L. S., Kozono, D. & Agre, P. From structure to disease: the evolving tale of aquaporin biology. Nature Rev. Mol. Cell Biol. 5, 687–698 (2004)
    Article CAS Google Scholar
  5. Tamas, M. J. et al. A short regulatory domain restricts glycerol transport through yeast Fps1p. J. Biol. Chem. 278, 6337–6345 (2003)
    Article CAS Google Scholar
  6. Johanson, U. et al. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 126, 1358–1369 (2001)
    Article ADS CAS Google Scholar
  7. Morishita, Y., Sakube, Y., Sasaki, S. & Ishibashi, K. Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms. J. Pharmacol. Sci. 96, 276–279 (2004)
    Article CAS Google Scholar
  8. Borstlap, A. C. Early diversification of plant aquaporins. Trends Plant Sci. 7, 529–530 (2002)
    Article CAS Google Scholar
  9. Johansson, I. et al. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10, 451–459 (1998)
    Article CAS Google Scholar
  10. Johansson, I., Larsson, C., Ek, B. & Kjellbom, P. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell 8, 1181–1191 (1996)
    CAS PubMed PubMed Central Google Scholar
  11. Tournaire-Roux, C. et al. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425, 393–397 (2003)
    Article ADS CAS Google Scholar
  12. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000)
    Article ADS CAS Google Scholar
  13. Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001)
    Article ADS CAS Google Scholar
  14. Savage, D. F., Egea, P. F., Robles-Colmenares, Y., O'Connell, J. D. & Stroud, R. M. Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of aquaporin Z. PLoS Biol. 1, E72 (2003)
    Article Google Scholar
  15. Gonen, T., Sliz, P., Kistler, J., Cheng, Y. & Walz, T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193–197 (2004)
    Article ADS CAS Google Scholar
  16. Harries, W. E., Akhavan, D., Miercke, L. J., Khademi, S. & Stroud, R. M. The channel architecture of aquaporin 0 at a 2.2 Å resolution. Proc. Natl Acad. Sci. USA 101, 14045–14050 (2004)
    Article ADS CAS Google Scholar
  17. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000)
    Article ADS CAS Google Scholar
  18. Tajkhorshid, E. et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296, 525–530 (2002)
    Article ADS CAS Google Scholar
  19. de Groot, B. L. & Grubmuller, H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294, 2353–2357 (2001)
    Article ADS CAS Google Scholar
  20. Jensen, M. O., Tajkhorshid, E. & Schulten, K. The mechanism of glycerol conduction in aquaglyceroporins. Structure 9, 1083–1093 (2001)
    Article CAS Google Scholar
  21. Jensen, M. O., Park, S., Tajkhorshid, E. & Schulten, K. Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc. Natl Acad. Sci. USA 99, 6731–6736 (2002)
    Article ADS CAS Google Scholar
  22. Daniels, M. J., Chrispeels, M. J. & Yeager, M. Projection structure of a plant vacuole membrane aquaporin by electron cryo-crystallography. J. Mol. Biol. 294, 1337–1349 (1999)
    Article CAS Google Scholar
  23. Kukulski, W. et al. The 5 Å structure of heterologously expressed plant aquaporin SoPIP2;1. J. Mol. Biol. 350, 611–616 (2005)
    Article CAS Google Scholar
  24. Hedges, S. B., Blair, J. E., Venturi, M. L. & Shoe, J. L. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4, 2 (2004)
    Article Google Scholar
  25. Jung, J. S., Preston, G. M., Smith, B. L., Guggino, W. B. & Agre, P. Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J. Biol. Chem. 269, 14648–14654 (1994)
    CAS PubMed Google Scholar
  26. Wang, Y., Schulten, K. & Tajkhorshid, E. What makes an aquaporin a glycerol channel: A comparative study of AqpZ and GlpF. Structure 13, 1107–1118 (2005)
    Article CAS Google Scholar
  27. de Groot, B. L., Frigato, T., Helms, V. & Grubmuller, H. The mechanism of proton exclusion in the aquaporin-1 water channel. J. Mol. Biol. 333, 279–293 (2003)
    Article CAS Google Scholar
  28. Jensen, M. O., Tajkhorshid, E. & Schulten, K. Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys. J. 85, 2884–2899 (2003)
    Article ADS CAS Google Scholar
  29. Chakrabarti, N., Tajkhorshid, E., Roux, B. & Pomes, R. Molecular basis of proton blockage in aquaporins. Structure 12, 65–74 (2004)
    Article CAS Google Scholar
  30. Ilan, B., Tajkhorshid, E., Schulten, K. & Voth, G. A. The mechanism of proton exclusion in aquaporin channels. Proteins 55, 223–228 (2004)
    Article CAS Google Scholar
  31. de Groot, B. L. & Grubmüller, H. The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr. Opin. Struct. Biol. 15, 176–183 (2005)
    Article CAS Google Scholar
  32. Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993)
    Article CAS Google Scholar
  33. Nemeth-Cahalan, K. L. & Hall, J. E. pH and calcium regulate the water permeability of aquaporin 0. J. Biol. Chem. 275, 6777–6782 (2000)
    Article CAS Google Scholar
  34. Zelenina, M., Bondar, A. A., Zelenin, S. & Aperia, A. Nickel and extracellular acidification inhibit the water permeability of human aquaporin-3 in lung epithelial cells. J. Biol. Chem. 278, 30037–30043 (2003)
    Article CAS Google Scholar
  35. Zelenina, M., Tritto, S., Bondar, A. A., Zelenin, S. & Aperia, A. Copper inhibits the water and glycerol permeability of aquaporin-3. J. Biol. Chem. 279, 51939–51943 (2004)
    Article CAS Google Scholar
  36. Madsen, D. & Kleywegt, G. J. Interactive motif and fold recognition in protein structures. J. Appl. Crystallogr. 35, 137–139 (2001)
    Article Google Scholar
  37. Karlsson, M. et al. Reconstitution of water channel function of an aquaporin overexpressed and purified from Pichia pastoris. FEBS Lett. 537, 68–72 (2003)
    Article CAS Google Scholar
  38. Bailey, S. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)
    Article Google Scholar
  39. Morris, R. J., Perrakis, A. & Lamzin, V. S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003)
    Article CAS Google Scholar
  40. Brunger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)
    Article CAS Google Scholar
  41. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996)
    Article CAS Google Scholar
  42. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)
    Article Google Scholar
  43. Kalé, L. et al. NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys. 151, 283–312 (1999)
    Article ADS Google Scholar
  44. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)
    Article CAS Google Scholar
  45. Schlenkrich, M., Brickmann, J., MacKerell, A. D. & Karplus, M. in Biological Membranes: A Molecular Perspective from Computation and Experiment (eds Merz, K. M. & Roux, B.) 31–81 (Birkhauser, Boston, Massachusetts, 1996)
    Book Google Scholar
  46. Darden, T., York, D. & Pedersen, L. Particle Mesh Ewald—an N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)
    Article ADS CAS Google Scholar
  47. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)
    Article CAS Google Scholar

Download references