Structural basis for the spectral difference in luciferase bioluminescence (original) (raw)
References
Seliger, H. H. & McElroy, W. D. Spectral emission and quantum yield of firefly bioluminescence. Arch. Biochem. Biophys.88, 136–141 (1960) ArticleCASPubMed Google Scholar
Kajiyama, N. & Nakano, E. Isolation and characterization of mutants of firefly luciferase which produce different colors of light. Protein Eng.4, 691–693 (1991) ArticleCASPubMed Google Scholar
Mamaev, S. V., Laikhter, A. L., Arslan, T. & Hecht, S. M. Firefly luciferase: Alteration of the color of emitted of light resulting from substitutions at position 286. J. Am. Chem. Soc.118, 7243–7244 (1996) ArticleCAS Google Scholar
Branchini, B. R., Southworth, T. L., Murtiashaw, M. H., Boije, H. & Fleet, S. E. A mutagenesis study of the putative luciferin binding site residues of firefly luciferase. Biochemistry42, 10429–10436 (2003) ArticleCASPubMed Google Scholar
Branchini, B. R. et al. Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color. Biochemistry38, 13223–13230 (1999) ArticleCASPubMed Google Scholar
Conti, E., Franks, N. P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure4, 287–298 (1996) ArticleCASPubMed Google Scholar
Franks, N. P., Jenkins, A., Conti, E., Lieb, W. R. & Brick, P. Structural basis for the inhibition of firefly luciferase by a general anesthetic. Biophys. J.75, 2205–2211 (1998) ArticleCASPubMedPubMed Central Google Scholar
DeLuca, M. Hydrophobic nature of the active site of firefly luciferase. Biochemistry8, 160–166 (1969) ArticleCASPubMed Google Scholar
White, E. H., Rapaport, E., Hopkins, T. A. & Seliger, H. H. Chemi- and bioluminescence of firefly luciferin. J. Am. Chem. Soc.91, 2178–2180 (1969) ArticleCASPubMed Google Scholar
Branchini, B. R. et al. An alternative mechanism of bioluminescence color determination in firefly luciferase. Biochemistry43, 7255–7262 (2004) ArticleCASPubMed Google Scholar
McCapra, F., Gilfoyle, D. J., Young, D. W., Church, N. J. & Spencer, P. in Bioluminescence and Chemiluminescence: Fundamental and Applied Aspects (eds Campbell, A. K., Krick, L. J. & Stanley, P. E.) 387–391 (John Wiley and Sons, Chichester, 1994) Google Scholar
Chang, K. H., Xiang, H. & Dunaway-Mariano, D. Acyl-adenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate:coenzyme A ligase. Biochemistry36, 15650–15659 (1997) ArticleCASPubMed Google Scholar
Kleinkauf, H. & Von Dohren, H. A nonribosomal system of peptide biosynthesis. Eur. J. Biochem.236, 335–351 (1996) ArticleCASPubMed Google Scholar
Babbitt, P. C. et al. Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry31, 5594–5604 (1992) ArticleCASPubMed Google Scholar
May, J. J., Kessler, N., Marahiel, M. A. & Stubbs, M. T. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc. Natl Acad. Sci. USA99, 12120–12125 (2002) ArticleADSCASPubMedPubMed Central Google Scholar
Ueda, H. et al. X-ray crystallographic conformational study of 5′-_O_-[_N_-(l-alanyl)-sulfamoyl]adenosine, a substrate analogue for alanyl-tRNA synthetase. Biochim. Biophys. Acta1080, 126–134 (1991) ArticleCASPubMed Google Scholar
Branchini, B. R., Murtiashaw, M. H., Carmody, J. N., Mygatt, E. E. & Southworth, T. L. Synthesis of an _N_-acyl sulfamate analog of luciferyl-AMP: a stable and potent inhibitor of firefly luciferase. Bioorg. Med. Chem. Lett.15, 3860–3864 (2005) ArticleCASPubMed Google Scholar
Conti, E., Stachelhaus, T., Marahiel, M. A. & Brick, P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J.16, 4174–4183 (1997) ArticleCASPubMedPubMed Central Google Scholar
Kumasaka, T., Yamamoto, M., Yamashita, E., Moriyama, H. & Ueki, T. Trichromatic concept optimizes MAD experiments in synchrotron X-ray crystallography. Structure10, 1205–1210 (2002) ArticleCASPubMed Google Scholar
Adachi, S. et al. The RIKEN structural biology beamline II (BL44B2) at the SPring-8. Nucl. Instrum. Methods A467–468, 711–714 (2001) ArticleADS Google Scholar
Pflugrath, J. W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D55, 1718–1725 (1999) ArticleADSCASPubMed Google Scholar
Leslie, A. G. W. in Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography No. 26 (CCP4, Warrington, 1992) Google Scholar
Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994) ArticleADS Google Scholar
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D53, 240–255 (1997) ArticleADSCASPubMed Google Scholar
Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol.6, 458–463 (1999) ArticleCASPubMed Google Scholar
Roussel, A. & Cambillau, C. Turbo-Frodo Manual (AFMB-CNRS, Marseille, 1996) Google Scholar
DeLano, W. L. The PyMOL Molecular Graphics System. (DeLano Scientific, San Carlos, California, 2002)