Quantum supercurrent transistors in carbon nanotubes (original) (raw)

Nature volume 439, pages 953–956 (2006)Cite this article

Abstract

Electronic transport through nanostructures is greatly affected by the presence of superconducting leads1,2,3. If the interface between the nanostructure and the superconductors is sufficiently transparent, a dissipationless current (supercurrent) can flow through the device owing to the Josephson effect4,5. A Josephson coupling, as measured by the zero-resistance supercurrent, has been obtained using tunnel barriers, superconducting constrictions, normal metals and semiconductors. The coupling mechanisms vary from tunnelling to Andreev reflection5,6,7,8. The latter process has hitherto been observed only in normal-type systems with a continuous density of electronic states. Here we investigate a supercurrent flowing through a discrete density of states—that is, the quantized single particle energy states of a quantum dot9, or ‘artificial atom’, placed between superconducting electrodes. For this purpose, we exploit the quantum properties of finite-sized carbon nanotubes10. By means of a gate electrode, successive discrete energy states are tuned on- and off-resonance with the Fermi energy in the superconducting leads, resulting in a periodic modulation of the critical current and a non-trivial correlation between the conductance in the normal state and the supercurrent. We find, in good agreement with existing theory[11](/articles/nature04550#ref-CR11 "Beenakker, C. W. J. & van Houten, H. Single-electron Tunneling and Mesoscopic Devices (eds Koch, H. & Lübbig, H.) see also http://xxx.lanl.gov/abs/cond-mat/0111505

             (2001) 175–179 (Springer, Berlin, 1992)"), that the product of the critical current and the normal state resistance becomes an oscillating function, in contrast to being constant as in previously explored regimes.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. de Gennes, P. G. Boundary effects in superconductors. Rev. Mod. Phys. 36, 225–237 (1964)
    Article ADS CAS Google Scholar
  2. Ralph, D. C., Black, C. T. & Tinkham, M. Spectroscopic measurements of discrete electronic states in single metal particles. Phys. Rev. Lett. 74, 3241–3244 (1995)
    Article ADS CAS Google Scholar
  3. von Delft, J. & Ralph, D. C. Spectroscopy of discrete energy levels in ultrasmall metallic grains. Phys. Rep. 345, 61–173 (2001)
    Article ADS CAS Google Scholar
  4. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962)
    Article ADS Google Scholar
  5. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, Singapore, 1996)
    Google Scholar
  6. Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 19, 1228–1231 (1964)
    Google Scholar
  7. Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979)
    Article ADS Google Scholar
  8. Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting micro-constrictions—excess current, charge imbalance, and super-current conversion. Phys. Rev. B 25, 4515–4532 (1982)
    Article ADS CAS Google Scholar
  9. Sohn, L. L., Kouwenhoven, L. P. & Schön, G. (eds) Mesoscopic Electron Transport (Kluwer, Dordrecht, 1997)
  10. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996)
    Google Scholar
  11. Beenakker, C. W. J. & van Houten, H. Single-electron Tunneling and Mesoscopic Devices (eds Koch, H. & Lübbig, H.) see also http://xxx.lanl.gov/abs/cond-mat/0111505 (2001) 175–179 (Springer, Berlin, 1992)
    Book Google Scholar
  12. Kouwenhoven, L. & Glazman, L. Revival of the Kondo effect. Phys. World 14, 33–38 (2001)
    Article CAS Google Scholar
  13. Jarillo-Herrero, P. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005)
    Article ADS CAS Google Scholar
  14. Liang, W. J. et al. Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001)
    Article ADS CAS Google Scholar
  15. Buitelaar, M. R., Bachtold, A., Nussbaumer, T., Iqbal, M. & Schonenberger, C. Multiwall carbon nanotubes as quantum dots. Phys. Rev. Lett. 88, 156801 (2002)
    Article ADS CAS Google Scholar
  16. Kasumov, A. Y. et al. Supercurrents through single-walled carbon nanotubes. Science 284, 1508–1511 (1999)
    Article ADS CAS Google Scholar
  17. Morpurgo, A. F., Kong, J., Marcus, C. M. & Dai, H. Gate-controlled superconducting proximity effect in carbon nanotubes. Science 286, 263–265 (1999)
    Article CAS Google Scholar
  18. Buitelaar, M. R., Nussbaumer, T. & Schonenberger, C. Quantum dot in the Kondo regime coupled to superconductors. Phys. Rev. Lett. 89, 256801 (2002)
    Article ADS CAS Google Scholar
  19. Haruyama, J. et al. End-bonding multiwalled carbon nanotubes in alumina templates: Superconducting proximity effect. Appl. Phys. Lett. 84, 4714–4716 (2004)
    Article ADS CAS Google Scholar
  20. Buitelaar, M. R. et al. Multiple Andreev reflections in a carbon nanotube quantum dot. Phys. Rev. Lett. 91, 057005 (2003)
    Article ADS CAS Google Scholar
  21. Takayanagi, H. & Kawakami, T. Superconducting proximity effect in the native inversion layer on InAs. Phys. Rev. Lett. 54, 2449–2452 (1985)
    Article ADS CAS Google Scholar
  22. McEuen, P. L. Single-wall carbon nanotubes. Phys. World 13, 31–36 (2000)
    Article CAS Google Scholar
  23. Doh, Y. J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005)
    Article ADS CAS Google Scholar
  24. Liang, W. J., Bockrath, M. & Park, H. Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002)
    Article ADS Google Scholar
  25. Sapmaz, S. et al. Electronic excitation spectrum of metallic carbon nanotubes. Phys. Rev. B 71, 153402 (2005)
    Article ADS Google Scholar
  26. Galaktionov, A. V. & Zaikin, A. D. Quantum interference and supercurrent in multiple-barrier proximity structures. Phys. Rev. B 65, 184507 (2002)
    Article ADS Google Scholar
  27. Joyez, P., Lafarge, P., Filipe, A., Esteve, D. & Devoret, M. H. Observation of parity-induced suppression of Josephson tunneling in the superconducting single-electron transistor. Phys. Rev. Lett. 72, 2458–2461 (1994)
    Article ADS CAS Google Scholar
  28. Glazman, L. I. & Matveev, K. A. Resonant Josephson current through Kondo impurities in a tunnel barrier. JETP Lett. 49, 659–662 (1989)
    ADS Google Scholar
  29. Choi, M. S., Lee, M., Kang, K. & Belzig, W. Kondo effect and Josephson current through a quantum dot between two superconductors. Phys. Rev. B 70, 020502 (2004)
    Article ADS Google Scholar
  30. Babic, B. & Schonenberger, C. Observation of Fano resonances in single-wall carbon nanotubes. Phys. Rev. B 70, 195408 (2004)
    Article ADS Google Scholar

Download references

Acknowledgements

We thank Yu. V. Nazarov, C. W. J. Beenakker, W. Belzig, S. De Franceschi and Y-J. Doh for discussions and C. Dekker for the use of nanotube growth facilities. Financial support was obtained from the Japanese International Cooperative Research Project (ICORP) and the Dutch Fundamenteel Onderzoek der Materie (FOM).

Author information

Authors and Affiliations

  1. Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
    Pablo Jarillo-Herrero, Jorden A. van Dam & Leo P. Kouwenhoven

Authors

  1. Pablo Jarillo-Herrero
    You can also search for this author inPubMed Google Scholar
  2. Jorden A. van Dam
    You can also search for this author inPubMed Google Scholar
  3. Leo P. Kouwenhoven
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toPablo Jarillo-Herrero.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Discussion and Supplementary Figures 1-6.

Rights and permissions

About this article

Cite this article

Jarillo-Herrero, P., van Dam, J. & Kouwenhoven, L. Quantum supercurrent transistors in carbon nanotubes.Nature 439, 953–956 (2006). https://doi.org/10.1038/nature04550

Download citation