Chance and necessity in the evolution of minimal metabolic networks (original) (raw)
References
Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature428, 37–43 (2004) ArticleADSCASPubMed Google Scholar
Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev. Microbiol.1, 127–136 (2003) ArticleCAS Google Scholar
Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol.4, R54 (2003) ArticlePubMedPubMed Central Google Scholar
Price, N. D., Reed, J. L. & Palsson, B. O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol.2, 886–897 (2004) ArticleCAS Google Scholar
Edwards, J. S. & Palsson, B. O. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl Acad. Sci. USA97, 5528–5533 (2000) ArticleADSCASPubMedPubMed Central Google Scholar
Gil, R., Latorre, A. & Moya, A. Bacterial endosymbionts of insects: insights from comparative genomics. Environ. Microbiol.6, 1109–1122 (2004) ArticleCASPubMed Google Scholar
Klasson, L. & Andersson, S. G. Evolution of minimal-gene-sets in host-dependent bacteria. Trends Microbiol.12, 37–43 (2004) ArticleCASPubMed Google Scholar
Burgard, A. P., Vaidyaraman, S. & Maranas, C. D. Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol. Prog.17, 791–797 (2001) ArticleCASPubMed Google Scholar
Moran, N. A. & Mira, A. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol.2, research0054 (2001) ArticleCASPubMedPubMed Central Google Scholar
Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature407, 81–86 (2000) ArticleADSCASPubMed Google Scholar
Tamas, I. et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science296, 2376–2379 (2002) ArticleADSCASPubMed Google Scholar
Akman, L. et al. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature Genet.32, 402–407 (2002) ArticleCASPubMed Google Scholar
Nakabachi, A. & Ishikawa, H. Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J. Insect Physiol.45, 1–6 (1999) ArticleCASPubMed Google Scholar
Baumann, P. et al. Genetics, physiology, and evolutionary relationships of the genus _Buchnera_—intracellular symbionts of aphids. Ann. Rev. Microbiol.49, 55–94 (1995) ArticleCAS Google Scholar
Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology143, 29–36 (1982) ArticleCASPubMed Google Scholar
Kumari, S., Tishel, R., Eisenbach, M. & Wolfe, A. J. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol.177, 2878–2886 (1995) ArticleCASPubMedPubMed Central Google Scholar
Zientz, E., Dandekar, T. & Gross, R. Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol. Mol. Biol. Rev.68, 745–770 (2004) ArticleCASPubMedPubMed Central Google Scholar
Nogge, G. Significance of symbionts for the maintenance of an optimal nutritional state for successful reproduction in haematophagous arthropods. Parasitology82, 101–104 (1981) Google Scholar
Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to Algorithms (MIT Press, Cambridge, MA, 2001) MATH Google Scholar
Burgard, A. P., Nikolaev, E. V., Schilling, C. H. & Maranas, C. D. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res.14, 301–312 (2004) ArticleCASPubMedPubMed Central Google Scholar
Travisano, M., Mongold, J. A., Bennett, A. F. & Lenski, R. E. Experimental tests of the roles of adaptation, chance, and history in evolution. Science267, 87–90 (1995) ArticleADSCASPubMed Google Scholar
Mushegian, A. R. & Koonin, E. V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl Acad. Sci. USA93, 10268–10273 (1996) ArticleADSCASPubMedPubMed Central Google Scholar
Gil, R., Silva, F. J., Pereto, J. & Moya, A. Determination of the core of a minimal bacterial gene set. Microbiol. Mol. Biol. Rev.68, 518–537 (2004) ArticleCASPubMedPubMed Central Google Scholar
Westers, H. et al. Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol. Biol. Evol.20, 2076–2090 (2003) ArticleCASPubMed Google Scholar
Mira, A. & Moran, N. A. Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb. Ecol.44, 137–143 (2002) ArticleCASPubMed Google Scholar