A voltage-gated proton-selective channel lacking the pore domain (original) (raw)
References
Yu, F. H. & Catterall, W. A. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE2004, re15 (2004) PubMed Google Scholar
Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science309, 897–903 (2005) ArticleADSCASPubMed Google Scholar
Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature435, 1239–1243 (2005) ArticleADSCASPubMed Google Scholar
DeCoursey, T. E. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev.83, 475–579 (2003) ArticleCASPubMed Google Scholar
DeCoursey, T. E., Morgan, D. & Cherny, V. V. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature422, 531–534 (2003) ArticleADSCASPubMed Google Scholar
Goldberg, J. et al. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature376, 745–753 (1995) ArticleADSCASPubMed Google Scholar
Schilling, T., Gratopp, A., DeCoursey, T. E. & Eder, C. Voltage-activated proton currents in human lymphocytes. J. Physiol. (Lond.)545, 93–105 (2002) ArticleCAS Google Scholar
DeCoursey, T. E., Cherny, V. V., DeCoursey, A. G., Xu, W. & Thomas, L. L. Interactions between NADPH oxidase-related proton and electron currents in human eosinophils. J. Physiol. (Lond.)535, 767–781 (2001) ArticleCAS Google Scholar
Thomas, R. C. & Meech, R. W. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature299, 826–828 (1982) ArticleADSCASPubMed Google Scholar
Henderson, L. M., Chappell, J. B. & Jones, O. T. Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge. Biochem. J.255, 285–290 (1988) CASPubMedPubMed Central Google Scholar
Rada, B. K., Geiszt, M., Kaldi, K., Timar, C. & Ligeti, E. Dual role of phagocytic NADPH oxidase in bacterial killing. Blood104, 2947–2953 (2004) ArticleCASPubMed Google Scholar
Smith, R. M. & Curnutte, J. T. Molecular basis of chronic granulomatous disease. Blood77, 673–686 (1991) CASPubMed Google Scholar
DeCoursey, T. E. & Cherny, V. V. Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. J. Gen. Physiol.112, 503–522 (1998) ArticleCASPubMedPubMed Central Google Scholar
Cherny, V. V. & DeCoursey, T. E. pH-dependent inhibition of voltage-gated H+ currents in rat alveolar epithelial cells by Zn2+ and other divalent cations. J. Gen. Physiol.114, 819–838 (1999) ArticleCASPubMedPubMed Central Google Scholar
Eder, C. & DeCoursey, T. E. Voltage-gated proton channels in microglia. Prog. Neurobiol.64, 277–305 (2001) ArticleCASPubMed Google Scholar
Cherny, V. V., Henderson, L. M. & DeCoursey, T. E. Proton and chloride currents in Chinese hamster ovary cells. Membr. Cell Biol.11, 337–347 (1997) CASPubMed Google Scholar
Morgan, D., Cherny, V. V., Price, M. O., Dinauer, M. C. & DeCoursey, T. E. Absence of proton channels in COS-7 cells expressing functional NADPH oxidase components. J. Gen. Physiol.119, 571–580 (2002) ArticleCASPubMedPubMed Central Google Scholar
Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev.80, 555–592 (2000) ArticleCASPubMed Google Scholar
Tombola, F., Pathak, M. M. & Isacoff, E. Y. How far will you go to sense voltage? Neuron48, 719–725 (2005) ArticleCASPubMed Google Scholar
Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature427, 548–553 (2004) ArticleADSCASPubMed Google Scholar
Pomes, R. & Roux, B. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel. Biophys. J.82, 2304–2316 (2002) ArticleADSCASPubMedPubMed Central Google Scholar
DeCoursey, T. E., Morgan, D. & Cherny, V. V. The gp91phox component of NADPH oxidase is not a voltage-gated proton channel. J. Gen. Physiol.120, 773–779 (2002) ArticleCASPubMedPubMed Central Google Scholar
Henderson, L. M. & Meech, R. W. Evidence that the product of the human X-linked CGD gene, gp91-phox, is a voltage-gated H+ pathway. J. Gen. Physiol.114, 771–786 (1999) ArticleCASPubMedPubMed Central Google Scholar
Bokoch, G. M. Regulation of innate immunity by Rho GTPases. Trends Cell Biol.15, 163–171 (2005) ArticleCASPubMed Google Scholar
DeCoursey, T. E., Cherny, V. V., Morgan, D., Katz, B. Z. & Dinauer, M. C. The gp91phox component of NADPH oxidase is not the voltage-gated proton channel in phagocytes, but it helps. J. Biol. Chem.276, 36063–36066 (2001) ArticleCASPubMed Google Scholar
Price, M. O. et al. Creation of a genetic system for analysis of the phagocyte respiratory burst: high-level reconstitution of the NADPH oxidase in a nonhematopoietic system. Blood99, 2653–2661 (2002) ArticleCASPubMed Google Scholar
Bokoch, G. M. & Knaus, U. G. NADPH oxidases: not just for leukocytes anymore! Trends Biochem. Sci.28, 502–508 (2003) ArticleCASPubMed Google Scholar
Qu, A. Y., Nanda, A., Curnutte, J. T. & Grinstein, S. Development of a H+-selective conductance during granulocytic differentiation of HL-60 cells. Am. J. Physiol.266, C1263–C1270 (1994) ArticleCASPubMed Google Scholar
Sasaki, M., Takagi, M. & Okamura, Y. A novel protein with a voltage sensor domain is a voltage-gated proton channel. Science (in the press)