The origins and the future of microfluidics (original) (raw)
Manz, A. et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems — capillary electrophoresis on a chip. J. Chromatog.593, 253–258 (1992). ArticleCAS Google Scholar
Ng, J. M. K., Gitlin, I., Stroock, A. D. & Whitesides, G. M. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis23, 3461–3473 (2002). ArticleCASPubMed Google Scholar
Whitesides, G. M. & Stroock, A. D. Flexible methods for microfluidics. Phys. Today54, 42–48 (2001). ArticleCAS Google Scholar
Mijatovic, D., Eijkel, J. C. T. & van den Berg, A. Technologies for nanofluidic systems: top-down vs. bottom-up — a review. Lab Chip5, 492–500 (2005). ArticleCASPubMed Google Scholar
Czaplewski, D. A., Kameoka, J., Mathers, R., Coates, G. W. & Craighead, H. G. Nanofluidic channels with elliptical cross sections formed using a nonlithographic process. Appl. Phys. Lett.83, 4836–4838 (2003). ArticleADSCAS Google Scholar
Hong, J. W. & Quake, S. R. Integrated nanoliter systems. Nature Biotechnol.21, 1179–1183 (2003). ArticleCAS Google Scholar
Weibel, D. B. et al. Torque-actuated valves for microfluidics. Anal. Chem.77, 4726–4733 (2005). ArticleCASPubMed Google Scholar
Nguyen, N. T. & Wu, Z. G. Micromixers — a review. J. Micromech. Microeng.15, R1–R16 (2005). Article Google Scholar
Gunther, A., Jhunjhunwala, M., Thalmann, M., Schmidt, M. A. & Jensen, K. F. Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir21, 1547–1555 (2005). ArticlePubMed Google Scholar
Garstecki, P., Fischbach, M. A. & Whitesides, G. M. Design for mixing using bubbles in branched microfluidic channels. Appl. Phys. Lett.86, 244108 (2005). ArticleADS Google Scholar
Laser, D. J. & Santiago, J. G. A review of micropumps. J. Micromech. Microeng.14, R35–R64 (2004). Article Google Scholar
McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis21, 27–40 (2000). ArticleCASPubMed Google Scholar
Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science298, 580–584 (2002). ArticleADSCASPubMed Google Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech.36, 381–411 (2004). ArticleADS Google Scholar
Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys.77, 977–1026 (2005). ArticleADSCAS Google Scholar
Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng.4, 261–286 (2002). ArticleCASPubMed Google Scholar
Santiago, J. G. Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal. Chem.73, 2353–2365 (2001). ArticleCASPubMed Google Scholar
Wainright, A., Nguyen, U. T., Bjornson, T. & Boone, T. D. Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices. Electrophoresis24, 3784–3792 (2003). ArticleCASPubMed Google Scholar
Karnik, R., Castelino, K. & Majumdar, A. Field-effect control of protein transport in a nanofluidic transistor circuit. Appl. Phys. Lett.88, 123114 (2006). ArticleADS Google Scholar
Hansen, C. L., Skordalakes, E., Berger, J. M. & Quake, S. R. A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl Acad. Sci. USA99, 16531–16536 (2002). ArticleADSCASPubMedPubMed Central Google Scholar
Shim, J.-u., Cristobal, G., Link, D. R., Thorsen, T. & Fraden, S. Using microfluidics to decouple nucleation and growth of protein crystals. J. Amer. Chem. Soc. (submitted).
Zheng, B., Tice, J. D., Roach, L. S. & Ismagilov, R. F. A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew. Chem. Int. Ed.43, 2508–2511 (2004). ArticleCAS Google Scholar
Ramsey, R. S. & Ramsey, J. M. Generating electrospray from microchip devices using electroosmotic pumping. Anal. Chem.69, 1174–1178 (1997). ArticleCAS Google Scholar
Dittrich, P. S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery. Nature Rev. Drug Discov.5, 210–218 (2006). ArticleCAS Google Scholar
Pihl, J., Karlsson, M. & Chiu, D. T. Microfluidic technologies in drug discovery. Drug Discov. Today10, 1377–1383 (2005). ArticleCASPubMed Google Scholar
Sia, S. K. & Whitesides, G. M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis24, 3563–3576 (2003). ArticleCASPubMed Google Scholar
Wheeler, A. R. et al. Microfluidic device for single-cell analysis. Anal. Chem.75, 3581–3586 (2003). ArticleCASPubMed Google Scholar
Werdich, A. A. et al. A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab Chip4, 357–362 (2004). ArticleCASPubMed Google Scholar
Dittrich, P. S. & Manz, A. Single-molecule fluorescence detection in microfluidic channels — the Holy Grail in µTAS? Anal. Bioanal. Chem.382, 1771–1782 (2005). ArticleCASPubMed Google Scholar
Stavis, S. M., Edel, J. B., Samiee, K. T. & Craighead, H. G. Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab Chip5, 337–343 (2005). ArticleCASPubMed Google Scholar
Lee, C. C. et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science310, 1793–1796 (2005). ArticleADSCASPubMed Google Scholar
Ganan-Calvo, A. M. & Gordillo, J. M. Perfectly monodisperse microbubbling by capillary flow focusing. Phys. Rev. Lett.87, 274501 (2001). ArticleCASPubMed Google Scholar
Garstecki, P. et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett.85, 2649–2651 (2004). ArticleADSCAS Google Scholar
Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett.86, 4163–4166 (2001). ArticleADSCASPubMed Google Scholar
Link, D. R., Anna, S. L., Weitz, D. A. & Stone, H. A. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett.92, 054503 (2004). ArticleADSCASPubMed Google Scholar
Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett.82, 364–366 (2003). ArticleADSCAS Google Scholar
Tan, Y. C., Fisher, J. S., Lee, A. I., Cristini, V. & Lee, A. P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip4, 292–298 (2004). ArticleCASPubMed Google Scholar
Xu, S. Q. et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Ed.44, 724–728 (2005). ArticleCAS Google Scholar
Kerbage, C. & Eggleton, B. J. Tunable microfluidic optical fiber gratings. Appl. Phys. Lett.82, 1338–1340 (2003). ArticleADSCAS Google Scholar
Datta, A. et al. Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens. J.3, 788–795 (2003). ArticleADSCAS Google Scholar
Balslev, S. & Kristensen, A. Microfuidic single-mode laser using high-order Bragg grating and antiguiding segments. Opt. Express13, 344–351 (2005). ArticleADSCASPubMed Google Scholar
Campbell, K. et al. A microfluidic 2×2 optical switch. Appl. Phys. Lett.85, 6119–6121 (2004). ArticleADSCAS Google Scholar
Vezenov, D. V. et al. A low-threshold, high-efficiency microfluidic waveguide laser. J. Am. Chem. Soc.127, 8952–8953 (2005). ArticleCASPubMed Google Scholar
Hung, P. J., Lee, P. J., Sabounchi, P., Lin, R. & Lee, L. P. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng.89, 1–8 (2005). ArticleCASPubMed Google Scholar
Chung, B. G. et al. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip5, 401–406 (2005). ArticleADSCASPubMed Google Scholar
Walker, G. M. et al. Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip5, 611–618 (2005). ArticleCASPubMedPubMed Central Google Scholar
Takayama, S. et al. Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem. Biol.10, 123–130 (2003). ArticleCASPubMed Google Scholar
Lu, H. et al. Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem.76, 5257–5264 (2004). ArticleCASPubMed Google Scholar
McClain, M. A. et al. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem.75, 5646–5655 (2003). ArticleCASPubMed Google Scholar
Cho, B. S. et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem.75, 1671–1675 (2003). ArticleCASPubMed Google Scholar
Walters, E. M., Clark, S. G., Beebe, D. J. & Wheeler, M. B. Mammalian embryo culture in a microfluidic device. Methods Mol. Biol.254, 375–382 (2004). PubMed Google Scholar
Glasgow, I. K. et al. Handling individual mammalian embryos using microfluidics. IEEE Trans. Biomed. Eng.48, 570–578 (2001). ArticleCASPubMed Google Scholar
Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H. & Ismagilov, R. F. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature434, 1134–1138 (2005). ArticleADSCASPubMedPubMed Central Google Scholar
Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem.75, 6544–6554 (2003). ArticleCASPubMed Google Scholar
Jensen, K. F. Silicon-based microchemical systems: characteristics and applications. MRS Bull.31, 101–107 (2006). ArticleCAS Google Scholar
Lowe, H. & Ehrfeld, W. State-of-the-art in microreaction technology: concepts, manufacturing and applications. Electrochim. Acta44, 3679–3689 (1999). ArticleCAS Google Scholar
Snyder, D. A. et al. Modular microreaction systems for homogeneously and heterogeneously catalyzed chemical synthesis. Helv. Chim. Acta88, 1–9 (2005). ArticleADSCAS Google Scholar
Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable “liquid Teflon” for microfluidic device fabrication. J. Am. Chem. Soc.126, 2322–2323 (2004). ArticleCASPubMed Google Scholar
Auroux, P. A., Koc, Y., deMello, A., Manz, A. & Day, P. J. R. Miniaturised nucleic acid analysis. Lab Chip4, 534–546 (2004). ArticleCASPubMed Google Scholar
Breslauer, D. N., Lee, P. J. & Lee, L. P. Microfluidics-based systems biology. Mol. Biosys.2, 97–112 (2006). ArticleCAS Google Scholar
Huh, D., Gu, W., Kamotani, Y., Grotberg, J. B. & Takayama, S. Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas.26, R73–R98 (2005). ArticleADSPubMed Google Scholar
Suh, R., Takayama, S. & Smith, G. D. Microfluidic applications for andrology. J. Androl.26, 664–670 (2005). ArticlePubMed Google Scholar
Balagaddé, F. K., You, L., Hansen, C. L., Arnold, F. H. & Quake, S. R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science309, 137–140 (2005). ArticleADSPubMed Google Scholar