Control and detection of chemical reactions in microfluidic systems (original) (raw)

References

  1. Wöhler, F. Grundriß der Organischen Chemie (Duncker und Humblot, Berlin, 1848).
    Google Scholar
  2. Levenspiel, O. Chemical Reaction Engineering (Wiley & Sons, Chichester, 1999).
    Google Scholar
  3. Nguyen, N. T. & Wu, Z. Micromixers — a review. J. Micromech. Microeng. 15, R1–R16 (2005).
    Google Scholar
  4. Ottino, J. M., Wiggins, S. Introduction: mixing in microfluidics. Phil. Trans. R. Soc. Lond. A 362, 923–935 (2004).
    MathSciNet MATH ADS Google Scholar
  5. Shastry, M. C. R., Luck, S. D. & Roder, H. A Continuous-flow capillary mixing method to monitor reactions on the microsecond time scale. Biophys. J. 74, 2714–2721 (1998).
    CAS ADS PubMed PubMed Central Google Scholar
  6. Knight, J. B., Vishwanath, A., Brody, J. P. & Austin, R. H. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80, 3863–3866 (1998).
    CAS ADS Google Scholar
  7. Ottino, J. M. The mixing of fluids. Sci. Am. 260, 56–67 (1989).
    ADS Google Scholar
  8. Ottino, J. M. Mixing, chaotic advection, and turbulence. Ann. Rev. Fluid Mech. 22, 207–254 (1990).
    MathSciNet ADS Google Scholar
  9. Mengeaud, V., Josserand, J. & Girault, H. H. Mixing processes in a zigzag microchannel: finite element simulation and optical study. Anal. Chem. 74, 4279–4286 (2002).
    CAS PubMed Google Scholar
  10. Chen, H. & Meiners, J. C. Topologic mixing on a microfluidic chip. Appl. Phys. Lett. 84, 2193–2195 (2004).
    CAS ADS Google Scholar
  11. Liu, R. H. et al. Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst. 9, 190–197 (2000).
    Google Scholar
  12. Stroock, A. D. et al. Chaotic mixer for microchannels. Science 295, 647–651 (2002).
    CAS ADS PubMed Google Scholar
  13. Biddiss, E., Erickson, D. & Li, D. Q. Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal. Chem. 76, 3208–3213 (2004).
    CAS PubMed Google Scholar
  14. Burns, M. A. et al. An integrated nanoliter DNA analysis device. Science 282, 484–487 (1998).
    CAS ADS PubMed Google Scholar
  15. Taniguchi, T., Torii, T. & Higuchi, T. Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media. Lab Chip 2, 19–23 (2002).
    CAS PubMed Google Scholar
  16. Bringer, M. R., Gerdts, C. J., Song, H., Tice, J. D. & Ismagilov, R. F. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil. Trans. R. Soc. Lond. A 362, 1087–1104 (2004).
    CAS ADS Google Scholar
  17. Tice, J. D., Song, H., Lyon, A. D. & Ismagilov, R. F. Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19, 9127–9133 (2003).
    CAS Google Scholar
  18. Song, H., Tice, J. D. & Ismagilov, R. F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Edn 42, 768–772 (2003).
    CAS Google Scholar
  19. Song, H. & Ismagilov, R. F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc. 125, 14613–14619 (2003).
    CAS PubMed PubMed Central Google Scholar
  20. Chambers, R. D. & Spink, R. C. H. Microreactors for elemental fluorine. Chem. Commun. 883–884 (1999).
  21. Chambers, R. D., Holling, D., Spink, R. C. H. & Sandford, G. Elemental fluorine Part 13. Gas–liquid thin film microreactors for selective direct fluorination. Lab Chip 1, 132–137 (2001).
    CAS PubMed Google Scholar
  22. Chambers, R. D., Fox, M. A. & Sandford, G. Elemental fluorine Part 18. Selective direct fluorination of 1,3-ketoesters and 1,3-diketones using gas/liquid microreactor technology. Lab Chip 5, 1132–1139 (2005).
    CAS PubMed Google Scholar
  23. Mitchell, M. C., Spikmans, V. & deMello, A. J. Microchip-based synthesis and analysis: control of multicomponent reaction products and intermediates. Analyst 126, 24–27 (2001).
    CAS ADS PubMed Google Scholar
  24. Kawaguchi, T., Miyata, H., Ataka, K., Mae, K. & Yoshida, J. Room-temperature Swern oxidations by using a microscale flow system. Angew. Chem. Int. Edn 44, 2413–2416 (2005).
    CAS Google Scholar
  25. Salimi-Moosavi, H., Tang, T. & Harrison, D. J. Electroosmotic pumping of organic solvents and reagents in microfabricated reactor chips. J. Am. Chem. Soc. 119, 8716–8717 (1997).
    CAS Google Scholar
  26. Wootton, R. C. R., Fortt, R. & de Mello, A. J. On chip generation and reaction of unstable intermediates — monolithic nanoreactors for diazonium chemistry: azo dyes. Lab Chip 2, 5–7 (2002).
    CAS PubMed Google Scholar
  27. Ducry, L. & Roberge, D. M. Controlled autocatalytic nitration of phenol in a microreactor. Angew. Chem. 117, 8186–8189 (2005).
    Google Scholar
  28. Iles, A., Fortt, R. & de Mello, A. J. Thermal optimisation of the Reimer–Tiemann reaction using thermochromic liquid crystals on a microfluidic reactor. Lab Chip 5, 550–554 (2005).
    Google Scholar
  29. Miller, P. W. et al. Rapid formation of amides via carbonylative coupling reactions using a microfluidic device. Chem. Commun. 546–548 (2006).
  30. Besser, R. S., Ouyang, X. & Surangalikar, H. Hydrocarbon hydrogenation and dehydrogenation reactions in microfabricated catalytic reactors. Chem. Eng. Sci. 58, 19–26 (2003).
    CAS Google Scholar
  31. Greenway, G. M., Haswell, S. J., Morgan, D. O., Skelton, V. & Styring, P. The use of a novel microreactor for high throughput continuous-flow organic synthesis. Sens. Actuators B 63, 153–158 (2000).
    CAS Google Scholar
  32. Schwesinger, N., Pieper, G. & Wurziger, H. Method for carrying out a metathesis reaction of unsaturated organic compounds. World Patent WO0170387 (2001).
  33. Lu, H., Schmidt, M. A. & Jensen, K. F. Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip 1, 22–28 (2001).
    CAS PubMed Google Scholar
  34. Wootton, R. C. R., Fortt, R. & de Mello, A. J. A microfabricated nanoreactor for safe, continuous generation and use of singlet oxygen. Org. Proc. Res. Dev. 6, 187–189 (2002).
    CAS Google Scholar
  35. Watts, P. & Haswell, S. J. Continuous-flow reactors for drug discovery. Drug Discov. Today 8, 586–593 (2003).
    CAS PubMed Google Scholar
  36. Jhähnisch, K., Hessel, V., Löwe, H. & Baerns, M. Chemistry in microstructured reactors. Angew. Chem. Int. Edn 43, 406–446 (2004).
    Google Scholar
  37. Brivio, M., Verboom, W. & Reinhoudt, D. N. Miniaturized continuous-flow reaction vessels: influence on chemical reactions. Lab Chip 6, 329–344 (2006).
    CAS PubMed Google Scholar
  38. Watts, P. & Haswell, S. J. The application of microreactors for small-scale organic synthesis. Chem. Eng. Technol. 28, 290–301 (2005).
    CAS Google Scholar
  39. Jensen, K. F. Microreaction engineering — is small better? Chem. Eng. Sci. 56, 293–303 (2001).
    CAS Google Scholar
  40. Geysen, H. M., Schoenen, F., Wagner, D. & Wagner, R. Combinatorial compound libraries for drug discovery: an ongoing challenge. Nature Rev. Drug Discov. 2, 222–230 (2003).
    Google Scholar
  41. Dittrich, P. S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery Nature Rev. Drug Discov. 5, 211–218 (2006).
    Google Scholar
  42. Mitchell, M. C., Spikmans, V., Manz, A. & deMello, A. J. Microchip-based synthesis and total analysis system (µSYNTAS): chemical microprocessing for generation and analysis of compound libraries. J. Chem. Soc. Perkin Trans. 1 514–518 (2001).
  43. Garcia-Egido, E., Wong, S. Y. F. & Warrington, B. H. A Hantzsch synthesis of 2-aminothiazoles performed in a heated microreactor system. Lab Chip 2, 31–33 (2002).
    CAS PubMed Google Scholar
  44. Fernandez-Suarez, M., Wong, S. Y. F. & Warrington, B. H. Synthesis of a three-member array of cycloadducts in a glass microchip under pressure driven flow. Lab Chip 2, 170–174 (2002).
    CAS PubMed Google Scholar
  45. Garcia-Egido, E., Spikmans, V., Wong, S. Y. F. & Warrington, B. H. Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system. Lab Chip 3, 73–76 (2003).
    CAS PubMed Google Scholar
  46. Kikutani, Y. et al. Glass microchip with three-dimensional microchannel network for 2 × 2 parallel synthesis. Lab Chip 2, 188–192 (2002).
    CAS PubMed Google Scholar
  47. Kobayashi, J. et al. A microfluidic device for conducting gas–liquid–solid hydrogenation reactions. Science 304, 1305–1308 (2004).
    CAS ADS PubMed Google Scholar
  48. Fredrickson, C. K. & Fan, Z. H. Macro-to-micro interfaces for microfluidic devices. Lab Chip 4, 526–533 (2004).
    CAS PubMed Google Scholar
  49. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).
    CAS ADS Google Scholar
  50. LaMer, V. K. & Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).
    CAS Google Scholar
  51. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).
    CAS ADS Google Scholar
  52. deMello, J. & deMello, A. Microscale reactors: nanoscale products. Lab Chip 4, 11N–15N (2004).
    CAS PubMed Google Scholar
  53. Edel, J. B., Fortt, R., deMello, J. C. & deMello, A. J. Microfluidic routes to the controlled production of nanoparticles. Chem. Commun. 1136–1137 (2002).
  54. Hung, L. -H. et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6, 174–178 (2006).
    CAS PubMed Google Scholar
  55. Krishnadasan, S., Tovilla, J., Vilar, R., deMello, A. J. & deMello, J. C. On-line analysis of CdSe nanoparticle formation in a continuous-flow chip-based microreactor. J. Mater. Chem. 14, 2655–2660 (2004).
    CAS Google Scholar
  56. Yen, B. K. H., Stott, N. E., Jensen, K. F. & Bawendi, M. G. A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv. Mater. 15, 1858–1862 (2003).
    CAS Google Scholar
  57. Song, Y., Kumar, C. S. S. R. & Hormes, J. Synthesis of Pd nanoparticles using a continuous-flow polymeric micro reactor. J. Nanosci. Nanotech. 4, 788–793 (2004).
    CAS Google Scholar
  58. He, S. et al. Effects of interior wall on continuous fabrication of silver nanoparticles in microcapillary reactor. Chem. Lett. 34, 748–749 (2005).
    CAS Google Scholar
  59. Lin, X. Z., Terepka, A. D. & Yang, H. Synthesis of silver nanoparticles in a continuous-flow tubular microreactor. Nano Lett. 4, 2227–2232 (2004).
    CAS ADS Google Scholar
  60. Wagner, J., Kirner, T., Mayer, G., Albert, J. A. & Köhler, J. M. Generation of metal nanoparticles in a microchannel reactor. Chem. Eng. J. 101, 251–260 (2004).
    CAS Google Scholar
  61. Song, Y. et al. Investigations into sulfobetaine-stabilized Cu nanoparticle formation: toward development of a microfluidic synthesis. J. Phys. Chem. B 109, 9330–9338 (2005).
    CAS PubMed Google Scholar
  62. Wang, H., Nakamura, H., Uehara, M., Miyazaki, M. & Maeda, H. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem. Commun. 1462–1463 (2002).
  63. Wang, H. et al. Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor. Chem. Commun. 48–49 (2004).
  64. Shestopalov, I., Tice, J. D. & Ismagilov, R. F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4, 316–321 (2004).
    CAS PubMed Google Scholar
  65. Chan, E. M., Alivisatos, A. P. & Mathies, R. A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplet. J. Am. Chem. Soc. 127, 13854–13861 (2005).
    CAS PubMed Google Scholar
  66. Yen, B. K. H., Günther, A., Schmidt, M. A., Jensen, K. F. & Bawendi, M. G. A microfabricated gas–liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. Angew. Chem. Int. Edn 44, 5447–5451 (2005).
    CAS Google Scholar
  67. Millman, J. R., Bhatt, K. H., Prevo, B. G. & Velev, O. D. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nature Mater. 4, 98–102 (2004).
    ADS Google Scholar
  68. Lagally, E. T. & Mathies, R. A. Integrated genetic analysis microsystems. J. Phys. D 37, R245–R261 (2004).
    CAS ADS Google Scholar
  69. Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).
    CAS PubMed Google Scholar
  70. Auroux, P.-A., Koç, Y., deMello, A., Manz, A. & Day, P. J. R. Miniaturised nucleic acid analysis. Lab Chip 4, 534–546 (2004).
    CAS PubMed Google Scholar
  71. Jakeway, S. C., de Mello, A. J. & Russell, E. Miniaturized total analysis systems for biological analysis. Fresenius J. Anal. Chem. 366, 525–539 (2000).
    CAS PubMed Google Scholar
  72. Mullis, K. B. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273 (1986).
    CAS PubMed Google Scholar
  73. Oda, R. P. et al. Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Anal. Chem. 70, 4361–4368 (1998).
    CAS PubMed Google Scholar
  74. Fermér, C., Nilsson, P. & Larhed, M. Microwave-assisted high-speed PCR. Eur. J. Pharm. Sci. 18, 129–132 (2003).
    PubMed Google Scholar
  75. Hu, G. et al. Electrokinetically controlled real-time polymerase chain reaction in microchannel using Joule heating effect. Anal. Chim. Acta 557, 146–151 (2006).
    CAS Google Scholar
  76. Woolley, A. T. et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 68, 4081–4086 (1996).
    CAS PubMed Google Scholar
  77. Krishnan, M., Ugaz, V. M. & Burns, M. A. PCR in a Rayleigh–Benard convection cell. Science 298, 793 (2003).
    Google Scholar
  78. Kopp, M. U., deMello, A. J. & Manz, A. Chemical amplification: continuous-flow PCR on a chip. Science 280, 1046–1048 (1998).
    CAS ADS PubMed Google Scholar
  79. Obeid, P. J., Christopoulos, T. K., Crabtree, H. J. & Backhouse, C. J. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal. Chem. 75, 288–295 (2003).
    CAS PubMed Google Scholar
  80. Marcus, J. S., Anderson, W. F. & Quake, S. R. Parallel picoliter RT-PCR assays using microfluidics. Anal. Chem. 78, 956–958 (2006).
    CAS PubMed Google Scholar
  81. Liu, R. H., Yang, J., Lenigk, R., Bonanno, J. & Grodzinski, P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 76, 1824–1831 (2004).
    CAS PubMed Google Scholar
  82. Lagally, E. T. et al. Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal. Chem. 76, 3162–3170 (2004).
    CAS PubMed Google Scholar
  83. Blazej, R. G., Kumaresan, P. & Mathies, R. A. Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proc. Natl Acad. Sci. USA 103, 7240–7245 (2006).
    CAS ADS PubMed PubMed Central Google Scholar
  84. Schwarz, M. A. & Hauser, P. C. Recent developments in detection methods for microfabricated analytical devices. Lab Chip 1, 1–6 (2001).
    CAS PubMed Google Scholar
  85. Dittrich, P. S. & Manz, A. Single-molecule fluorescence detection in microfluidic channels — the holy Grail in µTAS? Anal. Bioanal. Chem. 382, 1771–1782 (2005).
    CAS PubMed Google Scholar
  86. Dertinger, S. K. W., Chiu, D. T., Jeon, N. L. & Whitesides, G. M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73, 1240–1246 (2001).
    CAS Google Scholar
  87. Jeon, N. L. et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature Biotechnol. 20, 826–830 (2002).
    CAS Google Scholar
  88. Mao, H., Yang, T. & Cremer, P. S. A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. J. Am. Chem. Soc. 124, 4432–4435 (2002).
    CAS PubMed Google Scholar
  89. Cabrera, C. R., Finlayson, B. & Yager, P. Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation. Anal. Chem. 73, 658–666 (2001).
    CAS PubMed Google Scholar
  90. Ratner, D. M. et al. Microreactor-based reaction optimization in organic chemistry — glycosylation as a challenge. Chem. Commun. 578–580 (2005).
  91. Leung, S. -A., Winkle, R. F., Wootton, R. C. R. & deMello, A. J. A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online Raman spectroscopic detection. Analyst 130, 46–52 (2005).
    CAS ADS PubMed Google Scholar
  92. Hatakeyama, T., Chen, D. L. & Ismagilov, R. F. Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS. J. Am. Chem. Soc. 128, 2518–2519 (2006).
    CAS PubMed PubMed Central Google Scholar
  93. Chambers, R. D. et al. Elemental fluorine Part 16. Versatile thin-film gas–liquid multi-channel microreactors for effective scale-out. Lab Chip 5, 191–198 (2005).
    CAS PubMed Google Scholar
  94. Lee, C. C. et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 16, 1793–1796 (2005).
    ADS Google Scholar
  95. Kikutani, Y. et al. Pile-up glass microreactor. Lab Chip 2, 193–196 (2002).
    CAS PubMed Google Scholar
  96. Pennemann, H., Watts, P., Haswell, S. J., Hessel, V. & Lowe, H. Benchmarking of microreactor applications. Org. Proc. Res. Dev. 8, 422–439 (2004).
    CAS Google Scholar

Download references