Control and detection of chemical reactions in microfluidic systems (original) (raw)
References
Wöhler, F. Grundriß der Organischen Chemie (Duncker und Humblot, Berlin, 1848). Google Scholar
Levenspiel, O. Chemical Reaction Engineering (Wiley & Sons, Chichester, 1999). Google Scholar
Nguyen, N. T. & Wu, Z. Micromixers — a review. J. Micromech. Microeng.15, R1–R16 (2005). Google Scholar
Ottino, J. M., Wiggins, S. Introduction: mixing in microfluidics. Phil. Trans. R. Soc. Lond. A362, 923–935 (2004). MathSciNetMATHADS Google Scholar
Shastry, M. C. R., Luck, S. D. & Roder, H. A Continuous-flow capillary mixing method to monitor reactions on the microsecond time scale. Biophys. J.74, 2714–2721 (1998). CASADSPubMedPubMed Central Google Scholar
Knight, J. B., Vishwanath, A., Brody, J. P. & Austin, R. H. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett.80, 3863–3866 (1998). CASADS Google Scholar
Ottino, J. M. The mixing of fluids. Sci. Am.260, 56–67 (1989). ADS Google Scholar
Ottino, J. M. Mixing, chaotic advection, and turbulence. Ann. Rev. Fluid Mech.22, 207–254 (1990). MathSciNetADS Google Scholar
Mengeaud, V., Josserand, J. & Girault, H. H. Mixing processes in a zigzag microchannel: finite element simulation and optical study. Anal. Chem.74, 4279–4286 (2002). CASPubMed Google Scholar
Chen, H. & Meiners, J. C. Topologic mixing on a microfluidic chip. Appl. Phys. Lett.84, 2193–2195 (2004). CASADS Google Scholar
Liu, R. H. et al. Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst.9, 190–197 (2000). Google Scholar
Stroock, A. D. et al. Chaotic mixer for microchannels. Science295, 647–651 (2002). CASADSPubMed Google Scholar
Biddiss, E., Erickson, D. & Li, D. Q. Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal. Chem.76, 3208–3213 (2004). CASPubMed Google Scholar
Burns, M. A. et al. An integrated nanoliter DNA analysis device. Science282, 484–487 (1998). CASADSPubMed Google Scholar
Taniguchi, T., Torii, T. & Higuchi, T. Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media. Lab Chip2, 19–23 (2002). CASPubMed Google Scholar
Bringer, M. R., Gerdts, C. J., Song, H., Tice, J. D. & Ismagilov, R. F. Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil. Trans. R. Soc. Lond. A362, 1087–1104 (2004). CASADS Google Scholar
Tice, J. D., Song, H., Lyon, A. D. & Ismagilov, R. F. Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir19, 9127–9133 (2003). CAS Google Scholar
Song, H., Tice, J. D. & Ismagilov, R. F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Edn42, 768–772 (2003). CAS Google Scholar
Song, H. & Ismagilov, R. F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J. Am. Chem. Soc.125, 14613–14619 (2003). CASPubMedPubMed Central Google Scholar
Chambers, R. D. & Spink, R. C. H. Microreactors for elemental fluorine. Chem. Commun. 883–884 (1999).
Chambers, R. D., Holling, D., Spink, R. C. H. & Sandford, G. Elemental fluorine Part 13. Gas–liquid thin film microreactors for selective direct fluorination. Lab Chip1, 132–137 (2001). CASPubMed Google Scholar
Chambers, R. D., Fox, M. A. & Sandford, G. Elemental fluorine Part 18. Selective direct fluorination of 1,3-ketoesters and 1,3-diketones using gas/liquid microreactor technology. Lab Chip5, 1132–1139 (2005). CASPubMed Google Scholar
Mitchell, M. C., Spikmans, V. & deMello, A. J. Microchip-based synthesis and analysis: control of multicomponent reaction products and intermediates. Analyst126, 24–27 (2001). CASADSPubMed Google Scholar
Kawaguchi, T., Miyata, H., Ataka, K., Mae, K. & Yoshida, J. Room-temperature Swern oxidations by using a microscale flow system. Angew. Chem. Int. Edn44, 2413–2416 (2005). CAS Google Scholar
Salimi-Moosavi, H., Tang, T. & Harrison, D. J. Electroosmotic pumping of organic solvents and reagents in microfabricated reactor chips. J. Am. Chem. Soc.119, 8716–8717 (1997). CAS Google Scholar
Wootton, R. C. R., Fortt, R. & de Mello, A. J. On chip generation and reaction of unstable intermediates — monolithic nanoreactors for diazonium chemistry: azo dyes. Lab Chip2, 5–7 (2002). CASPubMed Google Scholar
Ducry, L. & Roberge, D. M. Controlled autocatalytic nitration of phenol in a microreactor. Angew. Chem.117, 8186–8189 (2005). Google Scholar
Iles, A., Fortt, R. & de Mello, A. J. Thermal optimisation of the Reimer–Tiemann reaction using thermochromic liquid crystals on a microfluidic reactor. Lab Chip5, 550–554 (2005). Google Scholar
Miller, P. W. et al. Rapid formation of amides via carbonylative coupling reactions using a microfluidic device. Chem. Commun. 546–548 (2006).
Besser, R. S., Ouyang, X. & Surangalikar, H. Hydrocarbon hydrogenation and dehydrogenation reactions in microfabricated catalytic reactors. Chem. Eng. Sci.58, 19–26 (2003). CAS Google Scholar
Greenway, G. M., Haswell, S. J., Morgan, D. O., Skelton, V. & Styring, P. The use of a novel microreactor for high throughput continuous-flow organic synthesis. Sens. Actuators B63, 153–158 (2000). CAS Google Scholar
Schwesinger, N., Pieper, G. & Wurziger, H. Method for carrying out a metathesis reaction of unsaturated organic compounds. World Patent WO0170387 (2001).
Lu, H., Schmidt, M. A. & Jensen, K. F. Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip1, 22–28 (2001). CASPubMed Google Scholar
Wootton, R. C. R., Fortt, R. & de Mello, A. J. A microfabricated nanoreactor for safe, continuous generation and use of singlet oxygen. Org. Proc. Res. Dev.6, 187–189 (2002). CAS Google Scholar
Watts, P. & Haswell, S. J. Continuous-flow reactors for drug discovery. Drug Discov. Today8, 586–593 (2003). CASPubMed Google Scholar
Jhähnisch, K., Hessel, V., Löwe, H. & Baerns, M. Chemistry in microstructured reactors. Angew. Chem. Int. Edn43, 406–446 (2004). Google Scholar
Brivio, M., Verboom, W. & Reinhoudt, D. N. Miniaturized continuous-flow reaction vessels: influence on chemical reactions. Lab Chip6, 329–344 (2006). CASPubMed Google Scholar
Watts, P. & Haswell, S. J. The application of microreactors for small-scale organic synthesis. Chem. Eng. Technol.28, 290–301 (2005). CAS Google Scholar
Jensen, K. F. Microreaction engineering — is small better? Chem. Eng. Sci.56, 293–303 (2001). CAS Google Scholar
Geysen, H. M., Schoenen, F., Wagner, D. & Wagner, R. Combinatorial compound libraries for drug discovery: an ongoing challenge. Nature Rev. Drug Discov.2, 222–230 (2003). Google Scholar
Dittrich, P. S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery Nature Rev. Drug Discov.5, 211–218 (2006). Google Scholar
Mitchell, M. C., Spikmans, V., Manz, A. & deMello, A. J. Microchip-based synthesis and total analysis system (µSYNTAS): chemical microprocessing for generation and analysis of compound libraries. J. Chem. Soc. Perkin Trans. 1 514–518 (2001).
Garcia-Egido, E., Wong, S. Y. F. & Warrington, B. H. A Hantzsch synthesis of 2-aminothiazoles performed in a heated microreactor system. Lab Chip2, 31–33 (2002). CASPubMed Google Scholar
Fernandez-Suarez, M., Wong, S. Y. F. & Warrington, B. H. Synthesis of a three-member array of cycloadducts in a glass microchip under pressure driven flow. Lab Chip2, 170–174 (2002). CASPubMed Google Scholar
Garcia-Egido, E., Spikmans, V., Wong, S. Y. F. & Warrington, B. H. Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system. Lab Chip3, 73–76 (2003). CASPubMed Google Scholar
Kikutani, Y. et al. Glass microchip with three-dimensional microchannel network for 2 × 2 parallel synthesis. Lab Chip2, 188–192 (2002). CASPubMed Google Scholar
Kobayashi, J. et al. A microfluidic device for conducting gas–liquid–solid hydrogenation reactions. Science304, 1305–1308 (2004). CASADSPubMed Google Scholar
Fredrickson, C. K. & Fan, Z. H. Macro-to-micro interfaces for microfluidic devices. Lab Chip4, 526–533 (2004). CASPubMed Google Scholar
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science271, 933–937 (1996). CASADS Google Scholar
LaMer, V. K. & Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc.72, 4847–4854 (1950). CAS Google Scholar
Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci.30, 545–610 (2000). CASADS Google Scholar
deMello, J. & deMello, A. Microscale reactors: nanoscale products. Lab Chip4, 11N–15N (2004). CASPubMed Google Scholar
Edel, J. B., Fortt, R., deMello, J. C. & deMello, A. J. Microfluidic routes to the controlled production of nanoparticles. Chem. Commun. 1136–1137 (2002).
Hung, L. -H. et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip6, 174–178 (2006). CASPubMed Google Scholar
Krishnadasan, S., Tovilla, J., Vilar, R., deMello, A. J. & deMello, J. C. On-line analysis of CdSe nanoparticle formation in a continuous-flow chip-based microreactor. J. Mater. Chem.14, 2655–2660 (2004). CAS Google Scholar
Yen, B. K. H., Stott, N. E., Jensen, K. F. & Bawendi, M. G. A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv. Mater.15, 1858–1862 (2003). CAS Google Scholar
Song, Y., Kumar, C. S. S. R. & Hormes, J. Synthesis of Pd nanoparticles using a continuous-flow polymeric micro reactor. J. Nanosci. Nanotech.4, 788–793 (2004). CAS Google Scholar
He, S. et al. Effects of interior wall on continuous fabrication of silver nanoparticles in microcapillary reactor. Chem. Lett.34, 748–749 (2005). CAS Google Scholar
Lin, X. Z., Terepka, A. D. & Yang, H. Synthesis of silver nanoparticles in a continuous-flow tubular microreactor. Nano Lett.4, 2227–2232 (2004). CASADS Google Scholar
Wagner, J., Kirner, T., Mayer, G., Albert, J. A. & Köhler, J. M. Generation of metal nanoparticles in a microchannel reactor. Chem. Eng. J.101, 251–260 (2004). CAS Google Scholar
Song, Y. et al. Investigations into sulfobetaine-stabilized Cu nanoparticle formation: toward development of a microfluidic synthesis. J. Phys. Chem. B109, 9330–9338 (2005). CASPubMed Google Scholar
Wang, H., Nakamura, H., Uehara, M., Miyazaki, M. & Maeda, H. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem. Commun. 1462–1463 (2002).
Wang, H. et al. Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor. Chem. Commun. 48–49 (2004).
Shestopalov, I., Tice, J. D. & Ismagilov, R. F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip4, 316–321 (2004). CASPubMed Google Scholar
Chan, E. M., Alivisatos, A. P. & Mathies, R. A. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplet. J. Am. Chem. Soc.127, 13854–13861 (2005). CASPubMed Google Scholar
Yen, B. K. H., Günther, A., Schmidt, M. A., Jensen, K. F. & Bawendi, M. G. A microfabricated gas–liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. Angew. Chem. Int. Edn44, 5447–5451 (2005). CAS Google Scholar
Millman, J. R., Bhatt, K. H., Prevo, B. G. & Velev, O. D. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nature Mater.4, 98–102 (2004). ADS Google Scholar
Lagally, E. T. & Mathies, R. A. Integrated genetic analysis microsystems. J. Phys. D37, R245–R261 (2004). CASADS Google Scholar
Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng.4, 261–286 (2002). CASPubMed Google Scholar
Auroux, P.-A., Koç, Y., deMello, A., Manz, A. & Day, P. J. R. Miniaturised nucleic acid analysis. Lab Chip4, 534–546 (2004). CASPubMed Google Scholar
Jakeway, S. C., de Mello, A. J. & Russell, E. Miniaturized total analysis systems for biological analysis. Fresenius J. Anal. Chem.366, 525–539 (2000). CASPubMed Google Scholar
Mullis, K. B. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol.51, 263–273 (1986). CASPubMed Google Scholar
Oda, R. P. et al. Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Anal. Chem.70, 4361–4368 (1998). CASPubMed Google Scholar
Fermér, C., Nilsson, P. & Larhed, M. Microwave-assisted high-speed PCR. Eur. J. Pharm. Sci.18, 129–132 (2003). PubMed Google Scholar
Hu, G. et al. Electrokinetically controlled real-time polymerase chain reaction in microchannel using Joule heating effect. Anal. Chim. Acta557, 146–151 (2006). CAS Google Scholar
Woolley, A. T. et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem.68, 4081–4086 (1996). CASPubMed Google Scholar
Krishnan, M., Ugaz, V. M. & Burns, M. A. PCR in a Rayleigh–Benard convection cell. Science298, 793 (2003). Google Scholar
Kopp, M. U., deMello, A. J. & Manz, A. Chemical amplification: continuous-flow PCR on a chip. Science280, 1046–1048 (1998). CASADSPubMed Google Scholar
Obeid, P. J., Christopoulos, T. K., Crabtree, H. J. & Backhouse, C. J. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal. Chem.75, 288–295 (2003). CASPubMed Google Scholar
Marcus, J. S., Anderson, W. F. & Quake, S. R. Parallel picoliter RT-PCR assays using microfluidics. Anal. Chem.78, 956–958 (2006). CASPubMed Google Scholar
Liu, R. H., Yang, J., Lenigk, R., Bonanno, J. & Grodzinski, P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem.76, 1824–1831 (2004). CASPubMed Google Scholar
Lagally, E. T. et al. Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal. Chem.76, 3162–3170 (2004). CASPubMed Google Scholar
Blazej, R. G., Kumaresan, P. & Mathies, R. A. Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proc. Natl Acad. Sci. USA103, 7240–7245 (2006). CASADSPubMedPubMed Central Google Scholar
Schwarz, M. A. & Hauser, P. C. Recent developments in detection methods for microfabricated analytical devices. Lab Chip1, 1–6 (2001). CASPubMed Google Scholar
Dittrich, P. S. & Manz, A. Single-molecule fluorescence detection in microfluidic channels — the holy Grail in µTAS? Anal. Bioanal. Chem.382, 1771–1782 (2005). CASPubMed Google Scholar
Dertinger, S. K. W., Chiu, D. T., Jeon, N. L. & Whitesides, G. M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem.73, 1240–1246 (2001). CAS Google Scholar
Jeon, N. L. et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature Biotechnol.20, 826–830 (2002). CAS Google Scholar
Mao, H., Yang, T. & Cremer, P. S. A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. J. Am. Chem. Soc.124, 4432–4435 (2002). CASPubMed Google Scholar
Cabrera, C. R., Finlayson, B. & Yager, P. Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation. Anal. Chem.73, 658–666 (2001). CASPubMed Google Scholar
Ratner, D. M. et al. Microreactor-based reaction optimization in organic chemistry — glycosylation as a challenge. Chem. Commun. 578–580 (2005).
Leung, S. -A., Winkle, R. F., Wootton, R. C. R. & deMello, A. J. A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online Raman spectroscopic detection. Analyst130, 46–52 (2005). CASADSPubMed Google Scholar
Hatakeyama, T., Chen, D. L. & Ismagilov, R. F. Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS. J. Am. Chem. Soc.128, 2518–2519 (2006). CASPubMedPubMed Central Google Scholar
Chambers, R. D. et al. Elemental fluorine Part 16. Versatile thin-film gas–liquid multi-channel microreactors for effective scale-out. Lab Chip5, 191–198 (2005). CASPubMed Google Scholar
Lee, C. C. et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science16, 1793–1796 (2005). ADS Google Scholar
Kikutani, Y. et al. Pile-up glass microreactor. Lab Chip2, 193–196 (2002). CASPubMed Google Scholar
Pennemann, H., Watts, P., Haswell, S. J., Hessel, V. & Lowe, H. Benchmarking of microreactor applications. Org. Proc. Res. Dev.8, 422–439 (2004). CAS Google Scholar