Calcineurin/NFAT signalling regulates pancreatic β-cell growth and function (original) (raw)
Heit, J. J., Karnik, S. K. & Kim, S. K. Intrinsic regulators of pancreatic β-cell proliferation. Annu. Rev. Cell Dev. Biol22, 311–338 (2006) ArticleCAS Google Scholar
Cozar-Castellano, I. et al. Molecular control of cell cycle progression in the pancreatic β-cell. Endocr. Rev.27, 356–370 (2006) ArticleCAS Google Scholar
Weir, M. R. & Fink, J. C. Risk for posttransplant diabetes mellitus with current immunosuppressive medications. Am. J. Kidney Dis.34, 1–13 (1999) ArticleCAS Google Scholar
Georgia, S. & Bhushan, A. β cell replication is the primary mechanism for maintaining postnatal β cell mass. J. Clin. Invest.114, 963–968 (2004) ArticleCAS Google Scholar
Kushner, J. A. et al. Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol. Cell. Biol.25, 3752–3762 (2005) ArticleCAS Google Scholar
Graef, I. A., Chen, F., Chen, L., Kuo, A. & Crabtree, G. R. Signals transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell105, 863–875 (2001) ArticleCAS Google Scholar
Crabtree, G. R. & Olson, E. N. NFAT signaling: choreographing the social lives of cells. Cell109 (Suppl.), S67–S79 (2002) ArticleCAS Google Scholar
Neilson, J. R., Winslow, M. M., Hur, E. M. & Crabtree, G. R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity20, 255–266 (2004) ArticleCAS Google Scholar
Winslow, M. M., Gallo, E. M., Neilson, J. R. & Crabtree, G. R. The calcineurin phosphatase complex modulates immunogenic B cell responses. Immunity24, 141–152 (2006) ArticleCAS Google Scholar
Herrera, P. L. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development127, 2317–2322 (2000) CASPubMed Google Scholar
Lawrence, M. C., Bhatt, H. S., Watterson, J. M. & Easom, R. A. Regulation of insulin gene transcription by a Ca2+-responsive pathway involving calcineurin and nuclear factor of activated T cells. Mol. Endocrinol.15, 1758–1767 (2001) ArticleCAS Google Scholar
Lawrence, M. C., Bhatt, H. S. & Easom, R. A. NFAT regulates insulin gene promoter activity in response to synergistic pathways induced by glucose and glucagon-like peptide-1. Diabetes51, 691–698 (2002) ArticleCAS Google Scholar
Lawrence, M. C., McGlynn, K., Park, B. H. & Cobb, M. H. ERK1/2-dependent activation of transcription factors required for acute and chronic effects of glucose on the insulin gene promoter. J. Biol. Chem.280, 26751–26759 (2005) ArticleCAS Google Scholar
Redmon, J. B., Olson, L. K., Armstrong, M. B., Greene, M. J. & Robertson, R. P. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. J. Clin. Invest.98, 2786–2793 (1996) ArticleCAS Google Scholar
Thorens, B., Guillam, M. T., Beermann, F., Burcelin, R. & Jaquet, M. Transgenic reexpression of GLUT1 or GLUT2 in pancreatic β cells rescues GLUT2-null mice from early death and restores normal glucose-stimulated insulin secretion. J. Biol. Chem.275, 23751–23758 (2000) ArticleCAS Google Scholar
O'Rahilly, S., Barroso, I. & Wareham, N. J. Genetic factors in type 2 diabetes: the end of the beginning? Science307, 370–373 (2005) ArticleADSCAS Google Scholar
Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nature Genet.22, 44–52 (1999) ArticleCAS Google Scholar
Laybutt, D. R. et al. Overexpression of c-Myc in β-cells of transgenic mice causes proliferation and apoptosis, downregulation of insulin gene expression, and diabetes. Diabetes51, 1793–1804 (2002) ArticleCAS Google Scholar
Pelengaris, S., Khan, M. & Evan, G. I. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell109, 321–334 (2002) ArticleCAS Google Scholar
Miyazaki, J. et al. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology127, 126–132 (1990) ArticleCAS Google Scholar
Baksh, S. et al. NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol. Cell10, 1071–1081 (2002) ArticleCAS Google Scholar
Beals, C. R., Clipstone, N. A., Ho, S. N. & Crabtree, G. R. Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev.11, 824–834 (1997) ArticleCAS Google Scholar
Winslow, M. M. et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev. Cell10, 771–782 (2006) ArticleCAS Google Scholar
Smart, N. G. et al. Conditional expression of Smad7 in pancreatic β cells disrupts TGF-β signaling and induces reversible diabetes mellitus. PLoS Biol.4, e39 (2006) ArticleADS Google Scholar
Screaton, R. A. et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell119, 61–74 (2004) ArticleCAS Google Scholar
Arron, J. R. et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature441, 595–600 (2006) ArticleADSCAS Google Scholar
Bruning, J. C. et al. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell88, 561–572 (1997) ArticleCAS Google Scholar
Kulkarni, R. N. et al. PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J. Clin. Invest.114, 828–836 (2004) ArticleCAS Google Scholar
Karnik, S. K. et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc. Natl Acad. Sci. USA102, 14659–14664 (2005) ArticleADSCAS Google Scholar