Structural insights into yeast septin organization from polarized fluorescence microscopy (original) (raw)

References

  1. Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol. 133, 605–616 (1996)
    Article CAS Google Scholar
  2. Kinoshita, M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 11, 1535–1547 (1997)
    Article CAS Google Scholar
  3. Neufeld, T. P. & Rubin, G. M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77, 371–379 (1994)
    Article CAS Google Scholar
  4. Hartwell, L. H. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265–276 (1971)
    Article CAS Google Scholar
  5. Dobbelaere, J. & Barral, Y. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science 305, 393–396 (2004)
    Article ADS CAS Google Scholar
  6. Lippincott, J., Shannon, K. B., Shou, W., Deshaies, R. J. & Li, R. The Tem1 small GTPase controls actomyosin and septin dynamics during cytokinesis. J. Cell Sci. 114, 1379–1386 (2001)
    CAS PubMed Google Scholar
  7. Cid, V. J., Adamikova, L., Sanchez, M., Molina, M. & Nombela, C. Cell cycle control of septin ring dynamics in the budding yeast. Microbiology 147, 1437–1450 (2001)
    Article CAS Google Scholar
  8. Frazier, J. A. et al. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749 (1998)
    Article CAS Google Scholar
  9. Rodal, A. A., Kozubowski, L., Goode, B. L., Drubin, D. G. & Hartwig, J. H. Actin and septin ultrastructures at the budding yeast cell cortex. Mol. Biol. Cell 16, 372–384 (2005)
    Article CAS Google Scholar
  10. Byers, B. & Goetsch, L. A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol. 69, 717–721 (1976)
    Article CAS Google Scholar
  11. Axelrod, D. Fluorescence polarization microscopy. Methods Cell Biol. 30, 333–352 (1989)
    Article CAS Google Scholar
  12. Sheff, M. A. & Thorn, K. S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670 (2004)
    Article CAS Google Scholar
  13. Burghardt, T. P. Model-independent fluorescence polarization for measuring order in a biological assembly. Biopolymers 23, 2383–2406 (1984)
    Article CAS Google Scholar
  14. Dale, R. E. et al. Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers. Biophys. J. 76, 1606–1618 (1999)
    Article ADS CAS Google Scholar
  15. Desper, C. R. & Kimura, I. Mathematics of the polarized-fluorescence experiment. J. Appl. Phys. 38, 4225–4233 (1967)
    Article ADS CAS Google Scholar
  16. Inoue, S., Shimomura, O., Goda, M., Shribak, M. & Tran, P. T. Fluorescence polarization of green fluorescence protein. Proc. Natl Acad. Sci. USA 99, 4272–4277 (2002)
    Article ADS CAS Google Scholar
  17. Axelrod, D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J. 26, 557–573 (1979)
    Article ADS CAS Google Scholar
  18. Volkmer, A., Subramaniam, V., Birch, D. J. & Jovin, T. M. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J. 78, 1589–1598 (2000)
    Article CAS Google Scholar
  19. Corrie, J. E. et al. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400, 425–430 (1999)
    Article ADS CAS Google Scholar
  20. Rocheleau, J. V., Edidin, M. & Piston, D. W. Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment. Biophys. J. 84, 4078–4086 (2003)
    Article CAS Google Scholar
  21. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991)
    Article ADS CAS Google Scholar
  22. Yang, F., Moss, L. G. & Phillips, G. N. Jr. The molecular structure of green fluorescent protein. Nature Biotechnol. 14, 1246–1251 (1996)
    Article CAS Google Scholar
  23. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996)
    Article ADS CAS Google Scholar
  24. Li, X. et al. Deletions of the Aequorea victoria green fluorescent protein define the minimal domain required for fluorescence. J. Biol. Chem. 272, 28545–28549 (1997)
    Article CAS Google Scholar
  25. Dobbelaere, J., Gentry, M. S., Hallberg, R. L. & Barral, Y. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell 4, 345–357 (2003)
    Article CAS Google Scholar
  26. Caviston, J. P., Longtine, M., Pringle, J. R. & Bi, E. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell 14, 4051–4066 (2003)
    Article CAS Google Scholar
  27. Schmidt, M., Bowers, B., Varma, A., Roh, D. H. & Cabib, E. In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J. Cell Sci. 115, 293–302 (2002)
    CAS PubMed Google Scholar
  28. Picart, C. & Discher, D. E. Actin protofilament orientation at the erythrocyte membrane. Biophys. J. 77, 865–878 (1999)
    Article ADS CAS Google Scholar
  29. Tatchell, K. & Robinson, L. C. Use of green fluorescent protein in living yeast cells. Methods Enzymol. 351, 661–683 (2002)
    Article CAS Google Scholar

Download references