Structural insights into yeast septin organization from polarized fluorescence microscopy (original) (raw)
References
Field, C. M. et al. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J. Cell Biol.133, 605–616 (1996) ArticleCAS Google Scholar
Kinoshita, M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev.11, 1535–1547 (1997) ArticleCAS Google Scholar
Neufeld, T. P. & Rubin, G. M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell77, 371–379 (1994) ArticleCAS Google Scholar
Hartwell, L. H. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res.69, 265–276 (1971) ArticleCAS Google Scholar
Dobbelaere, J. & Barral, Y. Spatial coordination of cytokinetic events by compartmentalization of the cell cortex. Science305, 393–396 (2004) ArticleADSCAS Google Scholar
Lippincott, J., Shannon, K. B., Shou, W., Deshaies, R. J. & Li, R. The Tem1 small GTPase controls actomyosin and septin dynamics during cytokinesis. J. Cell Sci.114, 1379–1386 (2001) CASPubMed Google Scholar
Cid, V. J., Adamikova, L., Sanchez, M., Molina, M. & Nombela, C. Cell cycle control of septin ring dynamics in the budding yeast. Microbiology147, 1437–1450 (2001) ArticleCAS Google Scholar
Frazier, J. A. et al. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol.143, 737–749 (1998) ArticleCAS Google Scholar
Rodal, A. A., Kozubowski, L., Goode, B. L., Drubin, D. G. & Hartwig, J. H. Actin and septin ultrastructures at the budding yeast cell cortex. Mol. Biol. Cell16, 372–384 (2005) ArticleCAS Google Scholar
Byers, B. & Goetsch, L. A highly ordered ring of membrane-associated filaments in budding yeast. J. Cell Biol.69, 717–721 (1976) ArticleCAS Google Scholar
Axelrod, D. Fluorescence polarization microscopy. Methods Cell Biol.30, 333–352 (1989) ArticleCAS Google Scholar
Sheff, M. A. & Thorn, K. S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast21, 661–670 (2004) ArticleCAS Google Scholar
Burghardt, T. P. Model-independent fluorescence polarization for measuring order in a biological assembly. Biopolymers23, 2383–2406 (1984) ArticleCAS Google Scholar
Dale, R. E. et al. Model-independent analysis of the orientation of fluorescent probes with restricted mobility in muscle fibers. Biophys. J.76, 1606–1618 (1999) ArticleADSCAS Google Scholar
Desper, C. R. & Kimura, I. Mathematics of the polarized-fluorescence experiment. J. Appl. Phys.38, 4225–4233 (1967) ArticleADSCAS Google Scholar
Inoue, S., Shimomura, O., Goda, M., Shribak, M. & Tran, P. T. Fluorescence polarization of green fluorescence protein. Proc. Natl Acad. Sci. USA99, 4272–4277 (2002) ArticleADSCAS Google Scholar
Axelrod, D. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys. J.26, 557–573 (1979) ArticleADSCAS Google Scholar
Volkmer, A., Subramaniam, V., Birch, D. J. & Jovin, T. M. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J.78, 1589–1598 (2000) ArticleCAS Google Scholar
Corrie, J. E. et al. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature400, 425–430 (1999) ArticleADSCAS Google Scholar
Rocheleau, J. V., Edidin, M. & Piston, D. W. Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment. Biophys. J.84, 4078–4086 (2003) ArticleCAS Google Scholar
Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science252, 1162–1164 (1991) ArticleADSCAS Google Scholar
Yang, F., Moss, L. G. & Phillips, G. N. Jr. The molecular structure of green fluorescent protein. Nature Biotechnol.14, 1246–1251 (1996) ArticleCAS Google Scholar
Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science273, 1392–1395 (1996) ArticleADSCAS Google Scholar
Li, X. et al. Deletions of the Aequorea victoria green fluorescent protein define the minimal domain required for fluorescence. J. Biol. Chem.272, 28545–28549 (1997) ArticleCAS Google Scholar
Dobbelaere, J., Gentry, M. S., Hallberg, R. L. & Barral, Y. Phosphorylation-dependent regulation of septin dynamics during the cell cycle. Dev. Cell4, 345–357 (2003) ArticleCAS Google Scholar
Caviston, J. P., Longtine, M., Pringle, J. R. & Bi, E. The role of Cdc42p GTPase-activating proteins in assembly of the septin ring in yeast. Mol. Biol. Cell14, 4051–4066 (2003) ArticleCAS Google Scholar
Schmidt, M., Bowers, B., Varma, A., Roh, D. H. & Cabib, E. In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J. Cell Sci.115, 293–302 (2002) CASPubMed Google Scholar
Picart, C. & Discher, D. E. Actin protofilament orientation at the erythrocyte membrane. Biophys. J.77, 865–878 (1999) ArticleADSCAS Google Scholar
Tatchell, K. & Robinson, L. C. Use of green fluorescent protein in living yeast cells. Methods Enzymol.351, 661–683 (2002) ArticleCAS Google Scholar