Crystal structure of an H/ACA box ribonucleoprotein particle (original) (raw)

References

  1. Ofengand, J. Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 514, 17–25 (2002)
    Article CAS Google Scholar
  2. Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145–148 (2002)
    Article CAS Google Scholar
  3. Meier, U. T. The many facets of H/ACA ribonucleoproteins. Chromosoma 114, 1–14 (2005)
    Article CAS Google Scholar
  4. Torchet, C. et al. The complete set of H/ACA snoRNAs that guide rRNA pseudouridylations in Saccharomyces cerevisiae. RNA 11, 928–938 (2005)
    Article CAS Google Scholar
  5. Lestrade, L. & Weber, M. J. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res. 34, D158–D162 (2006)
    Article CAS Google Scholar
  6. Ganot, P., Bortolin, M. L. & Kiss, T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89, 799–809 (1997)
    Article CAS Google Scholar
  7. Ni, J., Tien, A. L. & Fournier, M. J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89, 565–573 (1997)
    Article CAS Google Scholar
  8. Balakin, A. G., Smith, L. & Fournier, M. J. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86, 823–834 (1996)
    Article CAS Google Scholar
  9. Ganot, P., Caizergues-Ferrer, M. & Kiss, T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 11, 941–956 (1997)
    Article CAS Google Scholar
  10. Rozhdestvensky, T. S. et al. Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res. 31, 869–877 (2003)
    Article CAS Google Scholar
  11. Morrissey, J. P. & Tollervey, D. Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis. Mol. Cell. Biol. 13, 2469–2477 (1993)
    Article CAS Google Scholar
  12. Atzorn, V., Fragapane, P. & Kiss, T. U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production. Mol. Cell. Biol. 24, 1769–1778 (2004)
    Article CAS Google Scholar
  13. Mitchell, J. R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell. Biol. 19, 567–576 (1999)
    Article CAS Google Scholar
  14. Girard, J. P. et al. GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J. 11, 673–682 (1992)
    Article CAS Google Scholar
  15. Bousquet-Antonelli, C., Henry, Y., G'elugne, J. P., Caizergues-Ferrer, M. & Kiss, T. A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs. EMBO J. 16, 4770–4776 (1997)
    Article CAS Google Scholar
  16. Lafontaine, D. L., Bousquet-Antonelli, C., Henry, Y., Caizergues-Ferrer, M. & Tollervey, D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12, 527–537 (1998)
    Article CAS Google Scholar
  17. Watkins, N. J. et al. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4, 1549–1568 (1998)
    Article CAS Google Scholar
  18. Henras, A. et al. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 17, 7078–7090 (1998)
    Article CAS Google Scholar
  19. Baker, D. L. et al. RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes Dev. 19, 1238–1248 (2005)
    Article CAS Google Scholar
  20. Charpentier, B., Muller, S. & Branlant, C. Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Res. 33, 3133–3144 (2005)
    Article CAS Google Scholar
  21. Wang, C. & Meier, U. T. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J. 23, 1857–1867 (2004)
    Article CAS Google Scholar
  22. Henras, A. K., Capeyrou, R., Henry, Y. & Caizergues-Ferrer, M. Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs. RNA 10, 1704–1712 (2004)
    Article CAS Google Scholar
  23. Rashid, R. et al. Crystal structure of a Cbf5–Nop10–Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol. Cell 21, 249–260 (2006)
    Article CAS Google Scholar
  24. Hamma, T., Reichow, S. L., Varani, G. & Ferre-D'Amare, A. R. The Cbf5–Nop10 complex is a molecular bracket that organizes box H/ACA RNPs. Nature Struct. Mol. Biol. 12, 1101–1107 (2005)
    Article CAS Google Scholar
  25. Manival, X. et al. Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5–aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity. Nucleic Acids Res. 34, 826–839 (2006)
    Article CAS Google Scholar
  26. Girard, J. P., Bagni, C., Caizergues-Ferrer, M., Amalric, F. & Lapeyre, B. Identification of a segment of the small nucleolar ribonucleoprotein-associated protein GAR1 that is sufficient for nucleolar accumulation. J. Biol. Chem. 269, 18499–18506 (1994)
    CAS PubMed Google Scholar
  27. Ishitani, R. et al. Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme. Cell 113, 383–394 (2003)
    Article CAS Google Scholar
  28. Liang, X. H. et al. A genome-wide analysis of C/D and H/ACA-like small nucleolar RNAs in Trypanosoma brucei reveals a trypanosome-specific pattern of rRNA modification. RNA 11, 619–645 (2005)
    Article CAS Google Scholar
  29. Russell, A. G., Schnare, M. N. & Gray, M. W. Pseudouridine-guide RNAs and other Cbf5p-associated RNAs in Euglena gracilis. RNA 10, 1034–1046 (2004)
    Article CAS Google Scholar
  30. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature Genet. 19, 32–38 (1998)
    Article CAS Google Scholar
  31. Marrone, A., Walne, A. & Dokal, I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr. Opin. Genet. Dev. 15, 249–257 (2005)
    Article CAS Google Scholar
  32. Hoang, C. & Ferre-D'Amare, A. R. Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107, 929–939 (2001)
    Article CAS Google Scholar
  33. Pan, H., Agarwalla, S., Moustakas, D. T., Finer-Moore, J. & Stroud, R. M. Structure of tRNA pseudouridine synthase TruB and its RNA complex: RNA recognition through a combination of rigid docking and induced fit. Proc. Natl Acad. Sci. USA 100, 12648–12653 (2003)
    Article ADS CAS Google Scholar
  34. DeLano, W. L. The PyMOL User's Manual (Delano Scientific, San Carlos, California, 2002)
    Google Scholar

Download references