A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis (original) (raw)

References

  1. Hasty, P., Campisi, J., Hoeijmakers, J., van Steeg, H. & Vijg, J. Aging and genome maintenance: lessons from the mouse? Science 299, 1355–1359 (2003)
    Article CAS Google Scholar
  2. Kipling, D., Davis, T., Ostler, E. L. & Faragher, R. G. What can progeroid syndromes tell us about human aging? Science 305, 1426–1431 (2004)
    Article ADS CAS Google Scholar
  3. Hasty, P. & Vijg, J. Accelerating aging by mouse reverse genetics: a rational approach to understanding longevity. Aging Cell 3, 55–65 (2004)
    Article CAS Google Scholar
  4. Miller, R. A. Evaluating evidence for aging. Science 310, 441–443; author reply. 441–443 (2005)
    Article CAS Google Scholar
  5. Kirkwood, T. B. & Holliday, R. The evolution of ageing and longevity. Proc. R. Soc. Lond. B 205, 531–546 (1979)
    Article ADS CAS Google Scholar
  6. Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005)
    Article CAS Google Scholar
  7. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005)
    Article CAS Google Scholar
  8. Bartke, A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology 146, 3718–3723 (2005)
    Article CAS Google Scholar
  9. Bootsma, D., Kraemer, K. H., Cleaver, J. E. & Hoeijmakers, J. H. J. in The Metabolic and Molecular Basis of Inherited Disease (eds Scriver, C. R. et al.) 677–703 (McGraw-Hill, New York, 2001)
    Google Scholar
  10. Mitchell, J. R., Hoeijmakers, J. H. & Niedernhofer, L. J. Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr. Opin. Cell Biol. 15, 232–240 (2003)
    Article CAS Google Scholar
  11. Sijbers, A. M. et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86, 811–822 (1996)
    Article CAS Google Scholar
  12. Enzlin, J. H. & Scharer, O. D. The active site of the DNA repair endonuclease XPF–ERCC1 forms a highly conserved nuclease motif. EMBO J. 21, 2045–2053 (2002)
    Article CAS Google Scholar
  13. Tsodikov, O. V., Enzlin, J. H., Scharer, O. D. & Ellenberger, T. Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF–ERCC1. Proc. Natl Acad. Sci. USA 102, 11236–11241 (2005)
    Article ADS CAS Google Scholar
  14. Niedernhofer, L. J. et al. The structure-specific endonuclease Ercc1–Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol. Cell. Biol. 24, 5776–5787 (2004)
    Article CAS Google Scholar
  15. Matsumura, Y., Nishigori, C., Yagi, T., Imamura, S. & Takebe, H. Characterization of molecular defects in xeroderma pigmentosum group F in relation to its clinically mild symptoms. Hum. Mol. Genet. 7, 969–974 (1998)
    Article CAS Google Scholar
  16. Sijbers, A. M. et al. Homozygous R788W point mutation in the XPF gene of a patient with xeroderma pigmentosum and late-onset neurologic disease. J. Invest. Dermatol. 110, 832–836 (1998)
    Article CAS Google Scholar
  17. McWhir, J., Selfridge, J., Harrison, D. J., Squires, S. & Melton, D. W. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nature Genet. 5, 217–224 (1993)
    Article CAS Google Scholar
  18. Weeda, G. et al. Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr. Biol. 7, 427–439 (1997)
    Article CAS Google Scholar
  19. Tian, M., Shinkura, R., Shinkura, N. & Alt, F. W. Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol. Cell. Biol. 24, 1200–1205 (2004)
    Article CAS Google Scholar
  20. de Vries, A. et al. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377, 169–173 (1995)
    Article ADS CAS Google Scholar
  21. Prasher, J. M. et al. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice. EMBO J. 24, 861–871 (2005)
    Article CAS Google Scholar
  22. Biggerstaff, M., Szymkowski, D. E. & Wood, R. D. Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J. 12, 3685–3692 (1993)
    Article CAS Google Scholar
  23. Hansen, M., Hsu, A. L., Dillin, A. & Kenyon, C. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet. 1, 119–128 (2005)
    Article CAS Google Scholar
  24. Carter, C. S., Ramsey, M. M. & Sonntag, W. E. A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan. Trends Genet. 18, 295–301 (2002)
    Article CAS Google Scholar
  25. Lombardi, G., Di Somma, C., Rota, F. & Colao, A. Associated hormonal decline in aging: is there a role for GH therapy in aging men?. J. Endocrinol. Invest. 28, 99–108 (2005)
    CAS PubMed Google Scholar
  26. Lee, C. K., Klopp, R. G., Weindruch, R. & Prolla, T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390–1393 (1999)
    Article CAS Google Scholar
  27. Cao, S. X., Dhahbi, J. M., Mote, P. L. & Spindler, S. R. Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc. Natl Acad. Sci. USA 98, 10630–10635 (2001)
    Article ADS CAS Google Scholar
  28. van der Pluijm, I. et al. Impaired genome maintenance suppresses the GH/IGF1 axis in Cockayne syndrome mice. PLoS Biol. doi:10.137/journal.pbio.0050002 (in the press).
  29. Gupta, S. Hepatic polyploidy and liver growth control. Semin. Cancer Biol. 10, 161–171 (2000)
    Article CAS Google Scholar
  30. Lee, P. D., Conover, C. A. & Powell, D. R. Regulation and function of insulin-like growth factor-binding protein-1. Proc. Soc. Exp. Biol. Med. 204, 4–29 (1993)
    Article CAS Google Scholar
  31. Campisi, J. Aging, tumor suppression and cancer: high wire-act!. Mech. Ageing Dev. 126, 51–58 (2005)
    Article CAS Google Scholar
  32. Sonntag, W. E. et al. Adult-onset growth hormone and insulin-like growth factor I deficiency reduces neoplastic disease, modifies age-related pathology, and increases life span. Endocrinology 146, 2920–2932 (2005)
    Article CAS Google Scholar
  33. Wyllie, F. S. et al. Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nature Genet. 24, 16–17 (2000)
    Article CAS Google Scholar
  34. Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004)
    Article CAS Google Scholar
  35. Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006)
    Article CAS Google Scholar
  36. Kasai, H., Iwamoto-Tanaka, N. & Fukada, S. DNA modifications by the mutagen glyoxal: adduction to G and C, deamination of C and GC and GA cross-linking. Carcinogenesis 19, 1459–1465 (1998)
    Article CAS Google Scholar
  37. Niedernhofer, L. J., Daniels, J. S., Rouzer, C. A., Greene, R. E. & Marnett, L. J. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J. Biol. Chem. 278, 31426–31433 (2003)
    Article CAS Google Scholar
  38. Huang, Q. et al. Assessment of cisplatin-induced nephrotoxicity by microarray technology. Toxicol. Sci. 63, 196–207 (2001)
    Article CAS Google Scholar
  39. Ghoshal, A. K., Xu, Z., Wood, G. A. & Archer, M. C. Induction of hepatic insulin-like growth factor binding protein-1 (IGFBP-1) in rats by dietary n-6 polyunsaturated fatty acids. Proc. Soc. Exp. Biol. Med. 225, 128–135 (2000)
    Article CAS Google Scholar
  40. Takahashi, Y., Kushiro, M., Shinohara, K. & Ide, T. Activity and mRNA levels of enzymes involved in hepatic fatty acid synthesis and oxidation in mice fed conjugated linoleic acid. Biochim. Biophys. Acta 1631, 265–273 (2003)
    Article CAS Google Scholar
  41. Zhu, X. D. et al. ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol. Cell 12, 1489–1498 (2003)
    Article CAS Google Scholar
  42. Dollé, M. E. et al. Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice. Mutat. Res. 596, 22–35 (2006)
    Article Google Scholar
  43. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005)
    Article CAS Google Scholar
  44. Maccormick, R. E. Possible acceleration of aging by adjuvant chemotherapy: a cause of early onset frailty? Med. Hypotheses 67, 212–215 (2006)
    Article CAS Google Scholar
  45. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006)
    Article CAS Google Scholar
  46. Spindler, S. R. Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mech. Ageing Dev. 126, 960–966 (2005)
    Article CAS Google Scholar
  47. Kirkwood, T. B. & Shanley, D. P. Caloric restriction, hormesis and life history plasticity. Hum. Exp. Toxicol. 19, 338–339 (2000)
    Article CAS Google Scholar
  48. Muller, E. E., Locatelli, V. & Cocchi, D. Neuroendocrine control of growth hormone secretion. Physiol. Rev. 79, 511–607 (1999)
    Article CAS Google Scholar
  49. Pinkston, J. M., Garigan, D., Hansen, M. & Kenyon, C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313, 971–975 (2006)
    Article ADS CAS Google Scholar

Download references