Multiple molecular mechanisms for multidrug resistance transporters (original) (raw)

References

  1. Schinkel, A. H., Wagenaar, E., Mol, C. A. & van Deemter, L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97, 2517–2524 (1996)
    Article CAS Google Scholar
  2. Saier, M. H. & Paulsen, I. T. Phylogeny of multidrug transporters. Semin. Cell Dev. Biol. 12, 205–213 (2001)
    Article CAS Google Scholar
  3. Higgins, C. F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113 (1992)
    Article CAS Google Scholar
  4. Juliano, R. L. & Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455, 152–162 (1976)
    Article CAS Google Scholar
  5. Gottesman, M. M. Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer 2, 48–58 (2001)
    Article Google Scholar
  6. Holland, I. B., Cole, S. P. C., Kuchler, K., Higgins, C. F. (eds) ABC Proteins: from Bacteria to Man (Academic, London, 2003)
    Google Scholar
  7. van Veen, H. W. et al. A bacterial antibiotic resistance gene that complements the human multidrug resistance P-glycoprotein gene. Nature 391, 291–295 (1998)
    Article ADS CAS Google Scholar
  8. Higgins, C. F. et al. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323, 448–450 (1986)
    Article ADS CAS Google Scholar
  9. Rosenberg, M. F., Callaghan, R., Ford, R. C. & Higgins, C. F. Structure of the multidrug-resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy. J. Biol. Chem. 272, 10685–10694 (1997)
    Article CAS Google Scholar
  10. Rosenberg, M. F. et al. Repacking of the transmembrane domains of P-glycoprotein, during the transport ATPase cycle. EMBO J. 20, 5615–5625 (2001)
    Article CAS Google Scholar
  11. Rosenberg, M. F., Kamis, A. B., Callaghan, R., Higgins, C. F. & Ford, R. C. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J. Biol. Chem. 278, 8294–8299 (2003)
    Article CAS Google Scholar
  12. Rosenberg, M. F., Callaghan, R., Modok, S., Higgins, C. F. & Ford, R. C. Three-dimensional structure of P-glycoprotein: the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J. Biol. Chem. 280, 2857–2862 (2005)
    Article CAS Google Scholar
  13. Dawson, R. J. P. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006)
    Article ADS CAS Google Scholar
  14. Loo, T. W. & Clarke, D. M. The packing of the transmembrane segments of human multidrug resistance P-glycoprotein is revealed by disulfide cross-linking analysis. J. Biol. Chem. 275, 5253–5256 (2000)
    Article CAS Google Scholar
  15. Stenham, D. R. et al. An atomic detail model for the human ATP-binding cassette transporter, P-glycoprotein, derived from disulphide cross-linking and homology modelling. FASEB J. 17, 2287–2289 (2003)
    Article CAS Google Scholar
  16. Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002)
    Article CAS Google Scholar
  17. Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002)
    Article ADS CAS Google Scholar
  18. Pinkett, H. W., Lee, A. T., Lum, P., Locher, K. P. & Rees, D. C. An inward facing conformation of a putative metal-chelate-type ABC transporter. Science 315, 373–377 (2007); published online 7 December 2006.
  19. Chang, G. et al. Retraction. Science 314, 1875 (2006)
    CAS PubMed Google Scholar
  20. Zolnerciks, J. K., Wooding, C. & Linton, K. J. In vivo evidence for a Sav1866-like architecture for the human multidrug transporter P-glycoprotein. J. Biol. Chem. (submitted).
  21. Higgins, C. F. & Linton, K. J. The ATP switch model for ABC transporters. Nature Struct. Mol. Biol. 11, 918–926 (2004)
    Article CAS Google Scholar
  22. Dong, J., Yang, G. & Mchaourab, H. S. Structural basis for energy transduction in the transport cycle of MsbA. Science 308, 1023–1028 (2005)
    Article ADS CAS Google Scholar
  23. Dey, S., Ramachandra, M., Pastan, I., Gottesman, M. M. & Ambudkar, S. V. Evidence for two non-identical drug-interaction sites in the human P-glycoprotein. Proc. Natl Acad. Sci. USA 94, 10594–10599 (1997)
    Article ADS CAS Google Scholar
  24. Martin, C. et al. Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis. Biochemistry 39, 11901–11906 (2000)
    Article CAS Google Scholar
  25. Martin, C., Higgins, C. F. & Callaghan, R. The vinblastine binding site adopts high- and low-affinity conformations during a transport cycle of P-glycoprotein. Biochemistry 40, 15733–15742 (2001)
    Article CAS Google Scholar
  26. Payen, L. F., Gao, M., Westlake, C. J., Cole, S. P. C. & Deeley, R. G. Role of carboxylate residues adjacent to the conserved core walker B motifs in the catalytic cycle of multidrug resistance protein 1 (ABCC1). J. Biol. Chem. 278, 38537–38547 (2003)
    Article CAS Google Scholar
  27. van Veen, H. W., Margolles, A., Muller, M., Higgins, C. F. & Konings, W. N. The homodimeric ATP binding cassette transporter LmrA mediates multidrug resistance by a two-site (two-cylinder engine) mechanism. EMBO J. 19, 2503–2514 (2000)
    Article CAS Google Scholar
  28. Vergani, P., Lockless, S. W., Nairn, A. C. & Gadsby, D. C. CFTR channel opening by ATP-driven tight dimerization of its nucleotide binding domains. Nature 433, 876–880 (2005)
    Article ADS CAS Google Scholar
  29. Higgins, C. F. & Gottesman, M. M. Is the multidrug transporter a flippase? Trends Biochem. Sci. 17, 18–21 (1992)
    Article CAS Google Scholar
  30. Bolhuis, H. et al. Multidrug resistance in Lactococcus lactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J. 15, 4239–4245 (1996)
    Article CAS Google Scholar
  31. Loo, T. W. & Clarke, D. M. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J. Membr. Biol. 206, 173–185 (2005)
    Article CAS Google Scholar
  32. Martin, C. et al. Communication between multiple drug binding sites on P-glycoprotein. Mol. Pharmacol. 58, 624–632 (2000)
    Article CAS Google Scholar
  33. Shapiro, A. B. & Ling, V. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur. J. Biochem. 250, 130–137 (1997)
    Article CAS Google Scholar
  34. Zelcer, N. et al. Evidence for two interacting ligand binding sites in human multidrug resistance protein 2 (ABCC2). J. Biol. Chem. 278, 23538–23544 (2003)
    Article CAS Google Scholar
  35. Lugo, M. R. & Sharom, F. J. Interaction of LDS-751 and rhodamine 123 with P-glycoprotein: evidence for simultaneous binding of both drugs. Biochemistry 44, 14020–14029 (2005)
    Article CAS Google Scholar
  36. Ko, D. C., Gordon, M. D., Jin, J. Y. & Scott, M. P. Dynamic movements of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late endocytic events. Mol. Biol. Cell 12, 601–614 (2001)
    Article CAS Google Scholar
  37. Ma, Y. et al. Hedgehog-medicated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111, 63–75 (2002)
    Article CAS Google Scholar
  38. Zgurskaya, H. I. & Nikaido, H. Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli.. Proc. Natl Acad. Sci. USA 96, 7190–7195 (1999)
    Article ADS CAS Google Scholar
  39. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002)
    Article ADS CAS Google Scholar
  40. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structure of a multidrug transporter reveals a functionally rotating mechanism. Nature 443, 173–179 (2006)
    Article ADS CAS Google Scholar
  41. Yu, E. W., McDermott, G., Zgurskaya, H. I., Nikaido, H. & Koshland, D. E. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300, 976–980 (2003)
    Article ADS CAS Google Scholar
  42. Seeger, M. A. et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298 (2006)
    Article ADS CAS Google Scholar
  43. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–919 (2000)
    Article ADS CAS Google Scholar
  44. Aires, J. R. & Nikaido, H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J. Bacteriol. 187, 1923–1929 (2005)
    Article CAS Google Scholar
  45. Schuldiner, S., Lebendiker, M. & Yerushalmi, H. EmrE, the smallest ion-coupled transporter, provides a unique paradigm for structure-function studies. J. Exp. Biol. 200, 335–341 (1997)
    CAS PubMed Google Scholar
  46. Ubarretxena-Belandia, I., Baldwin, J. M., Schuldiner, S. & Tate, C. G. Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J. 22, 6175–6181 (2003)
    Article CAS Google Scholar
  47. Sharoni, M., Steiner-Mordoch, S. & Schuldiner, S. Exploring the binding domain of EmrE, the smallest multidrug transporter. J. Biol. Chem. 280, 32849–32855 (2005)
    Article CAS Google Scholar
  48. Soskine, M., Mark, S., Tayer, N., Mizrachi, R. & Schuldiner, S. On parallel and antiparallel topology of a homodimeric multidrug transporter. J. Biol. Chem. 281, 36205–36212 (2006)
    Article CAS Google Scholar
  49. Rapp, M., Granseth, E., Seppala, S. & von Heijne, G. Identification and evolution of dual-topology proteins. Nature Struct. Mol. Biol. 13, 112–116 (2006)
    Article CAS Google Scholar
  50. Yerushalmi, H. & Schuldiner, S. A model for coupling of H+ and substrate fluxes based on ‘time-sharing’ of a common binding site. Biochemistry 39, 14711–14719 (2000)
    Article CAS Google Scholar
  51. Abramson, J. et al. Structure and mechanisms of the lactose permease of Escherichia coli. Science 301, 610–615 (2003)
    Article ADS CAS Google Scholar
  52. Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D. N. Structure and mechanisms of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616–620 (2003)
    Article ADS CAS Google Scholar
  53. Yin, Y., He, X., Szewczyk, P., Nguyen, T. & Chang, G. Structure of the multidrug transporter EmrD from Escherichia coli. Science 312, 741–744 (2006)
    Article ADS CAS Google Scholar
  54. Adler, J. & Bibi, J. Promiscuity in the geometry of electrostatic interactions between the Escherichia coli multidrug resistance transporter MdfA and cationic substrates. J. Biol. Chem. 280, 2721–2729 (2005)
    Article CAS Google Scholar
  55. Mazurkiewicz, P., Driessen, A. J. & Konings, W. N. Energetics of wild type and mutant multidrug resistance secondary transporter LmrP of Lactococcus lactis. Biochim. Biophys. Acta 1658, 252–261 (2004)
    Article CAS Google Scholar
  56. Putman, M., Koole, L. A., van Veen, H. W. & Konings, W. N. The secondary multidrug transporter LmrP contains multiple drug interaction sites. Biochemistry 38, 13900–13905 (1999)
    Article CAS Google Scholar
  57. Lewinson, O., Padan, E. & Bibi, E. Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc. Natl Acad. Sci. USA 101, 14073–14078 (2004)
    Article ADS CAS Google Scholar
  58. Abramson, J., Iwata, S. & Kaback, H. R. Lactose permease as a paradigm for membrane transport proteins (Review). Mol. Membr. Biol. 21, 227–236 (2004)
    Article CAS Google Scholar
  59. Zheleznova, E. E., Markham, P. N., Neyfakh, A. A. & Brennan, R. G. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96, 353–362 (1999)
    Article CAS Google Scholar
  60. Vázquez-Laslop, N., Markham, P. N. & Neyfakh, A. A. Mechanisms of ligand recognition by BmrR, the multidrug-responding transcriptional regulator: mutational analysis of the ligand binding site. Biochemistry 38, 16925–16931 (1999)
    Article Google Scholar
  61. Schumacher, M. A. et al. Structural mechanisms of QacR induction and multidrug recognition. Science 294, 2158–2163 (2001)
    Article ADS CAS Google Scholar
  62. Schumacher, M. A., Miller, M. C. & Brennan, R. G. Structural mechanisms of the simultaneous binding of two drugs to a multidrug-binding protein. EMBO J. 23, 2923–2930 (2004)
    Article CAS Google Scholar
  63. Neyfakh, A. A. Mystery of multidrug transporters: the answer can be simple. Mol. Microbiol. 44, 1123–1130 (2002)
    Article CAS Google Scholar
  64. Tame, J. R. H. et al. The structural basis of sequence-independent peptide binding by OppA protein. Science 264, 1578–1581 (1994)
    Article ADS CAS Google Scholar
  65. Cupp-Vickery, J., Anderson, R. & Hatziris, Z. Crystal structures of ligand complexes of P450eryF exhibiting homotropic competition. Proc. Natl Acad. Sci. USA 97, 3050–3055 (2000)
    Article ADS CAS Google Scholar
  66. Watkins, R. E. et al. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292, 2329–2333 (2001)
    Article CAS Google Scholar
  67. Ramoni, R. et al. The insect attractant 1-octen-3-ol is the natural ligand of bovine odorant-binding protein. J. Biol. Chem. 276, 7150–7155 (2001)
    Article CAS Google Scholar
  68. Chang, G. & Roth, C. B. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293, 1793–1800 (2001)
    Article ADS CAS Google Scholar
  69. Ma, C. & Chang, G. Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proc. Natl Acad. Sci. USA 101, 2852–2857 (2004)
    Article ADS CAS Google Scholar
  70. Mitchell, P. A general theory for membrane transport from studies of bacteria. Nature 180, 134–136 (1957)
    Article ADS CAS Google Scholar
  71. Smit, J. J. M. et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993)
    Article CAS Google Scholar
  72. Stein, W. D., Cardarelli, C., Pastan, I. & Gottesman, M. M. Kinetic evidence suggesting that the multidrug transporter differentially handles influx and efflux of its substrates. Mol. Pharmacol. 45, 763–772 (1994)
    CAS PubMed Google Scholar
  73. Buchler, M. et al. cDNA cloning of the hepatocyte canalicular isoform of the multidrug resistance protein, cMRP, reveals a novel conjugate export pump deficient in the hyperbilirubinemic mutant rats. J. Biol. Chem. 271, 15091–15098 (1996)
    Article CAS Google Scholar
  74. Ahmed, M. et al. Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J. Bacteriol. 177, 3904–3910 (1995)
    Article CAS Google Scholar
  75. Lewinson, O. & Bibi, E. Evidence for simultaneous binding of dissimilar substrates by the Escherichia coli multidrug transporter MdfA. Biochemistry 40, 12612–12618 (2001)
    Article CAS Google Scholar
  76. Loe, D. W., Deeley, R. G. & Cole, S. P. C. Characterisation of vincristine transport by the _M_r 190,000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione. Cancer Res. 58, 5130–5136 (1998)
    CAS PubMed Google Scholar
  77. Rius, M., Mies, A. J., Hummel-Eisenbeiss, J., Jedlitschky, G. & Keppler, D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 38, 374–384 (2003)
    Article CAS Google Scholar

Download references