Cell tracing shows the contribution of the yolk sac to adult haematopoiesis (original) (raw)

References

  1. Medvinsky, A. & Dzierzak, E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897–906 (1996)
    Article CAS Google Scholar
  2. Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikolla, H. K. A. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005)
    Article CAS Google Scholar
  3. Cumano, A., Dieterlen-Lievre, F. & Godin, I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86, 907–916 (1996)
    Article CAS Google Scholar
  4. Cumano, A., Ferraz, J. C., Klaine, M., Di Santo, J. P. & Godin, I. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15, 477–485 (2001)
    Article CAS Google Scholar
  5. Yoder, M. C. et al. Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7, 335–344 (1997)
    Article CAS Google Scholar
  6. Weissman, I., Papaioannou, V. & Gardner, R. Fetal Hematopoietic Origins of the Adult Hematolymphoid System (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1978)
    Google Scholar
  7. Zhang, Y. et al. Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24, 543–548 (1996)
    Article CAS Google Scholar
  8. Okuda, T., Van Deursen, J., Hiebert, S. W., Grosveld, G. & Downing, J. R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996)
    Article CAS Google Scholar
  9. Wang, Q. et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl Acad. Sci. USA 93, 3444–3449 (1996)
    Article CAS ADS Google Scholar
  10. North, T. et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126, 2563–2575 (1999)
    CAS PubMed Google Scholar
  11. Cai, Z. et al. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 13, 423–431 (2000)
    Article CAS Google Scholar
  12. Samokhvalov, I. M. et al. Multifunctional reversible knockout/reporter system enabling fully functional reconstitution of the AML1/Runx1 locus and rescue of hematopoiesis. Genesis 44, 115–121 (2006)
    Article CAS Google Scholar
  13. Palis, J., Robertson, S., Kennedy, M., Wall, C. & Keller, G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073–5083 (1999)
    CAS PubMed Google Scholar
  14. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)
    Article CAS Google Scholar
  15. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001)
    Article CAS Google Scholar
  16. Igarashi, H., Kouro, T., Yokota, T., Comp, P. C. & Kincade, P. W. Age and stage dependency of estrogen receptor expression by lymphocyte precursors. Proc. Natl Acad. Sci. USA 98, 15131–15136 (2001)
    Article CAS ADS Google Scholar
  17. Kellendonk, C. et al. Inducible site-specific recombination in the brain. J. Mol. Biol. 285, 175–182 (1999)
    Article CAS Google Scholar
  18. Brotherton, T. W., Chui, D. H. K., Gauldie, J. & Patterson, M. Hemoglobin ontogeny during normal mouse fetal development. Proc. Natl Acad. Sci. USA 76, 2853–2857 (1979)
    Article CAS ADS Google Scholar
  19. Steiner, R. & Vogel, H. On the kinetics of erythroid cell differentiation in fetal mice: I. Microspectrophotometric determination of the hemoglobin content in erythroid cells during gestation. J. Cell. Physiol. 81, 323–338 (1973)
    Article CAS Google Scholar
  20. Lien, E. A., Solheim, E. & Ueland, P. M. Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res. 51, 4837–4844 (1991)
    CAS PubMed Google Scholar
  21. Kisanga, E. R., Gjerde, J., Schjott, J., Mellgren, G. & Lien, E. A. Tamoxifen administration and metabolism in nude mice and nude rats. J. Steroid Biochem. Mol. Biol. 84, 361–367 (2003)
    Article CAS Google Scholar
  22. Downs, K. M. & Davies, T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118, 1255–1266 (1993)
    CAS Google Scholar
  23. Nishikawa, S.-I. et al. In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 8, 761–769 (1998)
    Article CAS Google Scholar
  24. Mao, X., Fujiwara, Y. & Orkin, S. H. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc. Natl Acad. Sci. USA 96, 5037–5042 (1999)
    Article CAS ADS Google Scholar
  25. North, T. E. et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16, 661–672 (2002)
    Article CAS Google Scholar
  26. Minot, C. S. Development of the blood, the vascular system and the spleen. In Manual of Human Embryology (eds Keibel, F. and Mall, F. P.) 498–534 (J. B. Lippincott, Philadelphia, 1912)
    Google Scholar
  27. Gerlai, R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci. 19, 177–181 (1996)
    Article CAS Google Scholar
  28. Müller-Sieburg, C. E. & Riblet, R. Genetic control of the frequency of hematopoietic stem cells in mice: mapping of a candidate locus to chromosome 1. J. Exp. Med. 183, 1141–1150 (1996)
    Article Google Scholar
  29. Young, H. A. et al. Bone marrow and thymus expression of interferon-γ results in severe B-cell lineage reduction, T-cell lineage alterations, and hematopoietic progenitor deficiencies. Blood 89, 583–595 (1997)
    CAS PubMed Google Scholar
  30. Yu, J.-M. et al. Expression of interferon-γ by stromal cells inhibits murine long-term repopulating hematopoietic stem cell activity. Exp. Hematol. 27, 895–903 (1999)
    Article CAS Google Scholar

Download references