Pfeifer, G. P. et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene21, 7435–7451 (2002). CASPubMed Google Scholar
Friedberg, E. C. Inroads into base excision repair II. The discovery of the DNA glycosylases. DNA Repair (Amst.)3, 1531–1536 (2004). CAS Google Scholar
David, S. S. & Williams, S. D. Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem. Rev.98, 1221–1261 (1998). CASPubMed Google Scholar
Fromme, J. C. & Verdine, G. L. Base excision repair. Adv. Protein Chem.69, 1–41 (2004). CASPubMed Google Scholar
Barnes, D. E. & Lindahl, T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet.38, 445–476 (2004). CASPubMed Google Scholar
Sung, J.-S. & Demple, B. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J.273, 1620–1629 (2006). CASPubMed Google Scholar
Klaunig, J. E. & Kamendulis, L. M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol.44, 239–267 (2004). CASPubMed Google Scholar
Neeley, W. L. & Essigmann, J. M. Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem. Res. Toxicol.19, 491–505 (2006). CASPubMed Google Scholar
Burrows, C. M. & Muller, J. Oxidative nucleobase modifications leading to strand scission. Chem. Rev.98, 1109–1152 (1998). CASPubMed Google Scholar
Shibutani, S., Takeshita, M. & Grollman, A. P. Insertion of specific bases during DNA synthesis past the oxidation damaged base 8-oxodG. Nature349, 431–434 (1991). ADSCASPubMed Google Scholar
Hsu, G. W., Ober, M., Carell, T. & Beese, L. S. Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature431, 217–221 (2004). ADSCASPubMed Google Scholar
Michaels, M. L. & Miller, J. H. The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). J. Bacteriol.174, 6321–6325 (1992). CASPubMedPubMed Central Google Scholar
Krahn, J. M., Beard, W. A., Miller, H., Grollman, A. P. & Wilson, S. H. Structure of DNA polymerase β with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential. Structure11, 121–127 (2003). CASPubMed Google Scholar
Gedik, C. M. & Collins, A. Establishing the background level of base oxidation in human lymphocyte DNA: results on an interlaboratory validation study. FASEB J.19, 82–84 (2005). CASPubMed Google Scholar
Parikh, S. S., Putnam, C. D. & Tainer, J. A. Lessons learned from structural results on uracil-DNA glycosylase. Mutat. Res.460, 183–199 (2000). CASPubMed Google Scholar
Stivers, J. T. Site-specific DNA damage recognition by enzyme-induced base flipping. Prog. Nucleic Acid Res. Mol. Biol.77, 37–65 (2004). CASPubMed Google Scholar
Fromme, J. C., Banerjee, A. & Verdine, G. L. DNA glycosylase recognition and catalysis. Curr. Opin. Struct. Biol.14, 43–49 (2004). CASPubMed Google Scholar
Huffman, J. L., Sundheim, O. & Tainer, J. A. DNA base damage recognition and removal: new twists and grooves. Mutat. Res.577, 55–76 (2005). CASPubMed Google Scholar
Hitomi, K., Iwai, S. & Tainer, J. A. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal and repair. DNA Repair (Amst.)6, 410–428 (2007). CAS Google Scholar
Bruner, S. D., Norman, D. P. & Verdine, G. L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature403, 859–866 (2000). ADSCASPubMed Google Scholar
Banerjee, A., Yang, W., Karplus, M. & Verdine, G. L. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature434, 612–618 (2005). ADSCASPubMed Google Scholar
Radom, C. T., Banerjee, A. & Verdine, G. L. Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations. J. Biol. Chem.282, 9182–9194 (2007). CASPubMed Google Scholar
Banerjee, A. & Verdine, G. L. A nucleobase lesion remodels the interaction of its normal neighbor in a DNA glycosylase complex. Proc. Natl Acad. Sci. USA103, 15020–15025 (2006). ADSCASPubMedPubMed Central Google Scholar
Banerjee, A., Santos, W. L. & Verdine, G. L. Structure of a DNA glycosylase searching for DNA lesions. Science311, 1153–1157 (2006). ADSCASPubMed Google Scholar
Fromme, J. C. & Verdine, G. L. DNA lesion recognition by the bacterial repair enzyme MutM. J. Biol. Chem.278, 51543–51548 (2003). CASPubMed Google Scholar
Blainey, P. C., van Oijen, A. M., Banerjee, A., Verdine, G. L. & Xie, X. S. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc. Natl Acad. Sci. USA103, 5752–5757 (2006). ADSCASPubMedPubMed Central Google Scholar
Jiang, Y. L. et al. Recognition of an unnatural difluorophenyl nucleotide by uracil DNA glycosylase. Biochemistry43, 15429–15438 (2004). CASPubMed Google Scholar
Noll, D. M., Gogos, A., Granek, J. A. & Clarke, N. D. The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity of 8-oxoguanine–adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase. Biochemistry38, 6374–6379 (1999). CASPubMed Google Scholar
Chmiel, N. H., Golinelli, M.-P., Francis, A. W. & David, S. S. Efficient recognition of substrates and substrate analogs by the adenine glycosylase MutY requires the C-terminal domain. Nucleic Acids Res.29, 553–564 (2001). CASPubMedPubMed Central Google Scholar
Fromme, J. C., Banerjee, A., Huang, S. J. & Verdine, G. L. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature427, 652–656 (2004). ADSCASPubMed Google Scholar
Wiederholdt, C. J., Delaney, M. O., Pope, M. A., David, S. S. & Greenberg, M. M. Repair of DNA containing FapydG and its C-nucleoside analogue by formamidopyrimidine DNA glycosylase and MutY. Biochemistry42, 9755–9760 (2003). Google Scholar
Bernards, A. S., Miller, J. K., Bao, K. K. & Wong, I. Flipping duplex DNA inside out: a double base-flipping reaction mechanism by Escherichia coli MutY adenine glycosylase. J. Biol. Chem.277, 20960–20964 (2002). CASPubMed Google Scholar
Al-Tassan, N. et al. Inherited variants of MYH associated with somatic G:C to T:A mutations in colorectal tumors. Nature Genet.30, 227–232 (2002). CASPubMed Google Scholar
Fearnhead, N. S., Britton, M. P. & Bodmer, W. F. The ABC of APC. Hum. Mol. Genet.10, 721–733 (2001). CASPubMed Google Scholar
Chmiel, N. H., Livingston, A. L. & David, S. S. Insight into the functional consequences of inherited variants of the hMYH adenine glycosylase associated with colorectal cancer: complementation assays with hMYH variants and pre-steady-state kinetics of the corresponding mutated E. coli enzymes. J. Mol. Biol.327, 431–443 (2003). CASPubMed Google Scholar
Sampson, J. R., Jones, S., Dolwani, S. & Cheadle, J. P. MutYH (MYH) and colorectal cancer. Biochem. Soc. Trans.33, 679–683 (2005). CASPubMed Google Scholar
Cheadle, J. P. & Sampson, J. R. MUTYH-associated polyposis — from defect in base excision repair to clinical genetic testing. DNA Repair (Amst.)6, 274–279 (2007). CAS Google Scholar
Livingston, A. L., Kundu, S., Henderson-Pozzi, M., Anderson, D. W. & David, S. S. Insight into the roles of tyrosine 82 and glycine 253 in the Escherichia coli adenine glycosylase MutY. Biochemistry44, 14179–14190 (2005). CASPubMed Google Scholar
Pope, M. A., Chmiel, N. H. & David, S. S. Insight into the functional consequences of hMYH variants associated with colorectal cancer: distinct differences in the adenine glycosylase activity and the response to AP endonuclease of Y150C and G365D murine MYH. DNA Repair (Amst.)4, 315–325 (2005). CAS Google Scholar
Tominaga, Y. et al. MUTYH prevents OGG1 or APEX1 from inappropriately processing its substrate or reaction product with its C-terminal domain. Nucleic Acids Res.32, 3198–3211 (2004). CASPubMedPubMed Central Google Scholar
Wooden, S. H., Bassett, H. M., Wood, T. G. & McCullough, A. K. Identification of critical residues required for the mutation avoidance function of human MutY (hMYH) and implications in colorectal cancer. Cancer Lett.205, 89–95 (2004). CASPubMed Google Scholar
Hirano, S. et al. Mutator phenotype of MutYH-null mouse embryonic stem cells. J. Biol. Chem.278, 38121–38124 (2003). CASPubMed Google Scholar
Lipton, L. et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res.63, 7595–7599 (2003). CASPubMed Google Scholar
Xie, Y. et al. Deficiencies in mouse Myh and Ogg1 results in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors. Cancer Res.64, 3096–3102 (2004). CASPubMed Google Scholar
Russo, M. T. et al. Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylase. Cancer Res.64, 4411–4414 (2004). CASPubMed Google Scholar
Sieber, O. M. et al. Myh deficiency enhances intestinal tumorigenesis in multiple intestinal neoplasia (_Apc_Min/+) mice. Cancer Res.64, 8876–8881 (2004). CASPubMed Google Scholar
Sampson, J. R. et al. MYH polyposis: a new autosomal recessive form of familial adenomatous polyposis demanding reappraisal of genetic risk and family management. Lancet362, 39–41 (2003). CASPubMed Google Scholar
Chow, E., Thirlwell, C., Macrae, F. & Lipton, L. Colorectal cancer and inherited mutations in base-excision repair. Lancet Oncol.5, 600–606 (2004). CASPubMed Google Scholar
Lipton, L. & Tomlinson, I. The multiple colorectal adenoma phenotype and MYH, a excision repair gene. Clin. Gastroenterol. Hepatol.2, 633–638 (2004). CASPubMed Google Scholar
Lipton, L. & Tomlinson, I. The genetics of FAP and FAP-like syndromes. Fam. Cancer5, 221–226 (2006). CASPubMed Google Scholar
Farrington, S. M. et al. Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am. J. Hum. Genet.77, 112–119 (2005). CASPubMedPubMed Central Google Scholar
Fleischmann, C. et al. Comprehensive analysis of the contribution of germline MYH variation of early-onset colorectal cancer. Int. J. Cancer109, 554–558 (2004). CASPubMed Google Scholar
Strate, L. L. & Syngal, S. Hereditary colorectal cancer syndromes. Cancer Causes Control16, 201–213 (2005). PubMed Google Scholar
Jo, W. S. & Chung, D. C. Genetics of hereditary colorectal cancer. Semin. Oncol.32, 11–23 (2005). CASPubMed Google Scholar
Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell87, 159–170 (1996). CASPubMed Google Scholar
Soreide, K., Janssen, E. A. M., Soiland, H., Korner, H. & Baak, J. P. Microsatellite instability in colorectal cancer. Br. J. Surg.93, 395–406 (2006). CASPubMed Google Scholar
Lindor, N. M. et al. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome. JAMA296, 1507–1517 (2006). CASPubMed Google Scholar
Venesio, T. et al. High frequency of MYH gene mutations in a subset of patients with familial adenomatous polyposis. Gastroenterology126, 1681–1685 (2004). CASPubMed Google Scholar
Leite, J. S. et al. Is prophylactic colectomy indicated in patients with MYH-associated polyposis? Colorectal Dis.7, 327–331 (2005). CASPubMed Google Scholar
Bai, H. et al. Functional characterization of two human MutY homolog (hMYH) missense mutations (R227W and V232F) that lie within the putative hMSH6 binding domain and are associated with hMYH polyposis. Nucleic Acids Res.33, 597–604 (2005). CASPubMedPubMed Central Google Scholar
Bai, H. et al. Functional characterization of human MutY homolog (hMYH) missense mutation (R231L) that is linked with hMYH-associated polyposis. Cancer Lett.250, 74–81 (2007). CASPubMed Google Scholar
Alhopuro, P. et al. A novel functionally deficient MYH variant in individuals with colorectal adenomatous polyposis. Hum. Mutat.26, 393 (2005). PubMed Google Scholar
Klunglund, A. et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl Acad. Sci. USA96, 13300–13305 (1999). ADS Google Scholar
Osterod, M. et al. A global DNA repair mechanism involving Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Oncogene21, 8232–8239 (2002). CASPubMed Google Scholar
Osterod, M. et al. Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Carcinogenesis22, 1459–1463 (2001). CASPubMed Google Scholar
Sunesen, M., Stevnsner, T., Brosh, R. M., Dianov, G. L. & Bohr, V. A. Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product. Oncogene21, 3571–3578 (2002). CASPubMed Google Scholar
Cadet, J., Decarroz, C., Wang, S. Y. & Midden, W. R. Mechanisms and products of photosensitized degradation of nucleic acids and related model compounds. Isr. J. Chem.1983, 420–429 (1983). Google Scholar
Ravanat, J. L. & Cadet, J. Reaction of singlet oxygen with 2'-deoxyguanosine and DNA. Isolation and characterization of the main oxidation products. Chem. Res. Toxicol.8, 379–388 (1995). CASPubMed Google Scholar
Ravanat, J. L., Berger, M., Bernard, F., Langlois, R. & Ouellet, R. Phthalocyanine and naphthalocyanine photosensitized oxidation of 2'-deoxyguanosine: distinct type I and type II products. Photochem. Photobiol.55, 809–814 (1992). CAS Google Scholar
Luo, W., Muller, J. G., Rachlin, E. M. & Burrows, C. J. Characterization of spiroiminodihydantoin as a product of one-electron oxidation of 8-oxo-7,8-dihydroguanosine. Org. Lett.2, 613–616 (2000). CASPubMed Google Scholar
Niles, J. C., Wishnok, J. S. & Tannenbaum, S. R. Spiroiminodihydantoin is the major product of the 8-oxo-7,8-dihydroguanosine reaction with peroxynitrite in the presence of thiols and guanosine photooxidation by methylene blue. Org. Lett.3, 963–966 (2001). CASPubMed Google Scholar
Adam, W. et al. Spiroiminodihydantoin is a major product in the photooxidation of 2'-deoxyguanosine by the triplet states and oxyl radicals generated from hydroxyacetophenone photolysis and dioxetane thermolysis. Org. Lett.4, 537–540 (2002). CASPubMed Google Scholar
Burrows, C. J. et al. Structure and potential mutagenicity of new hydantoin products from guanosine and 8-oxo-7,8-dihydroguanosine oxidation by transition metals. Environ. Health Perspect.110, 713–717 (2002). CASPubMedPubMed Central Google Scholar
Luo, W., Muller, J. G., Rachlin, E. M. & Burrows, C. J. Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model. Chem. Res. Toxicol.14, 927–938 (2001). CASPubMed Google Scholar
Kornyushyna, O., Berges, A. M., Muller, J. G. & Burrows, C. J. In vitro nucleotide misinsertion opposite the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the lesions using Escherichia coli DNA polymerase I (Klenow fragment). Biochemistry41, 15304–15314 (2002). CASPubMed Google Scholar
Kornyushyna, O. & Burrows, C. J. Effect of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin on proofreading by Escherichia coli DNA polymerase I (Klenow fragment) in different sequence contexts. Biochemistry42, 13008–13018 (2003). CASPubMed Google Scholar
Henderson, P. T. et al. The hydantoin lesions from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. Biochemistry42, 9257–9262 (2003). CASPubMed Google Scholar
Delaney, S., Neeley, W. L., Delaney, J. C. & Essigmann, J. M. The substrate specificity of MutY for hyperoxidized guanine lesions in vivo. Biochemistry, 46, 1448–1455 (2007). CASPubMed Google Scholar
Leipold, M. D., Muller, J. G., Burrows, C. J. & David, S. S. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, Fpg. Biochemistry39, 14984–14992 (2000). CASPubMed Google Scholar
Leipold, M. D., Workman, H., Muller, J. G., Burrows, C. J. & David, S. S. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1 and yOGG2. Biochemistry42, 11373–11381 (2003). CASPubMed Google Scholar
Hazra, T. K. et al. Repair of hydantoins, one electron oxidation product of 8-oxoguanine, by DNA glycosylases of Escherichia coli. Nucleic Acids Res.29, 1967–1974 (2001). CASPubMedPubMed Central Google Scholar
Wallace, S. S., Bandaru, V., Kathe, S. D. & Bond, J. P. The enigma of endonuclease VIII. DNA Repair (Amst.)2, 441–453 (2003). CAS Google Scholar
Hailer, M. K., Slade, P. G., Martin, B. D. & Sugden, K. D. Nei-deficient Escherichia coli are sensitive to chromate and accumulate the oxidized guanine lesion spiroiminodihydantoin. Chem. Res. Toxicol.18, 1378–1383 (2005). CASPubMedPubMed Central Google Scholar
Bandaru, V., Sunkara, S., Wallace, S. S. & Bond, J. P. A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII. DNA Repair (Amst.)1, 517–529 (2002). CAS Google Scholar
Hazra, T. K. et al. Identification and characterization of a human DNA glycosylase for repair of modified oxidatively damaged DNA. Proc. Natl Acad. Sci. USA99, 3523–3528 (2002). ADSCASPubMedPubMed Central Google Scholar
Hazra, T. K. et al. Identification of a novel human DNA glycosylase for repair of cytosine-derived lesions. J. Biol. Chem.277, 30417–30420 (2002). CASPubMed Google Scholar
Morland, I. et al. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res.30, 4926–4936 (2002). CASPubMedPubMed Central Google Scholar
Doublie, S., Bandaru, V., Bond, J. P. & Wallace, S. S. The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proc. Natl Acad. Sci. USA101, 10284–10289 (2004). ADSCASPubMedPubMed Central Google Scholar
Dou, H., Mitra, S. & Hazra, T. K. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J. Biol. Chem.278, 49679–49684 (2003). CASPubMed Google Scholar
Hailer, K. M., Slade, P. G., Martin, B. D., Rosenquist, T. A. & Sugden, K. D. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the base excision repair glycosylases NEIL1 and NEIL2. DNA Repair (Amst.)4, 41–50 (2005). CAS Google Scholar
Das, A., Hazra, T. K., Boldogh, I., Mitra, S. & Bhakat, K. K. Induction of the human oxidized base-specific DNA glycosylase NEIL1 by reactive oxygen species. J. Biol. Chem.280, 35272–35280 (2005). CASPubMed Google Scholar
Rosenquist, T. A. et al. The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death. DNA Repair (Amst.)2, 581–591 (2003). CAS Google Scholar
Shinmura, K. et al. Inactivating mutations of the human base excision repair gene NEIL1 in gastric cancer. Carcinogenesis25, 2311–2317 (2004). CASPubMed Google Scholar
Vartanian, V. et al. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc. Natl Acad. Sci. USA103, 1864–1869 (2006). ADSCASPubMedPubMed Central Google Scholar
Guan, Y. et al. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nature Struct. Biol.5, 1058–1064 (1998). CASPubMed Google Scholar
Lukianova, O. L. & David, S. S. A role for iron–sulfur clusters in DNA repair. Curr. Opin. Chem. Biol.9, 145–151 (2005). CASPubMed Google Scholar