Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice (original) (raw)

References

  1. Karno, M., Golding, J. M., Sorenson, S. B. & Burnam, M. A. The epidemiology of obsessive-compulsive disorder in five US communities. Arch. Gen. Psychiatry 45, 1094–1099 (1988)
    Article CAS Google Scholar
  2. Torres, A. R. et al. Obsessive-compulsive disorder: prevalence, comorbidity, impact, and help-seeking in the British national psychiatric morbidity survey of 2000. Am. J. Psychiatry 163, 1978–1985 (2006)
    Article Google Scholar
  3. Swedo, S. E. & Snider, L. A. in Neurobiology of Mental Illness (eds Nestler, E. J & Charney, D.S.) 628–638 (Oxford Univ. Press, New York, 2004)
    Google Scholar
  4. Graybiel, A. M. & Rauch, S. L. Toward a neurobiology of obsessive-compulsive disorder. Neuron 28, 343–347 (2000)
    Article CAS Google Scholar
  5. Aouizerate, B. et al. Pathophysiology of obsessive-compulsive disorder: a necessary link between phenomenology, neuropsychology, imagery and physiology. Prog. Neurobiol. 72, 195–221 (2004)
    Article Google Scholar
  6. Hanna, G. L. et al. Genome-wide linkage analysis of families with obsessive-compulsive disorder ascertained through pediatric probands. Am. J. Med. Genet. 114, 541–552 (2002)
    Article Google Scholar
  7. Shugart, Y. Y. et al. Genomewide linkage scan for obsessive-compulsive disorder: evidence for susceptibility loci on chromosomes 3q, 7p, 1q, 15q, and 6q. Mol. Psychiatry 11, 763–770 (2006)
    Article CAS Google Scholar
  8. Nestadt, G. et al. A family study of obsessive-compulsive disorder. Arch. Gen. Psychiatry 57, 358–363 (2000)
    Article CAS Google Scholar
  9. Inouye, E. Similar and dissimilar manifestations of obsessive-compulsive neurosis in monozygotic twins. Am. J. Psychiatry 121, 1171–1175 (1965)
    Article CAS Google Scholar
  10. Carey, G. & Gottesman, I. I. in Anxiety: New Research and Changing Concepts (eds Klein, D.F. & Rabkin J.) 117–136 (Raven Press, New York, 1981)
    Google Scholar
  11. Chakrabarty, K., Bhattacharyya, S., Christopher, R. & Khanna, S. Glutamatergic dysfunction in OCD. Neuropsychopharmacology 30, 1735–1740 (2005)
    Article CAS Google Scholar
  12. Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 136, 669–678 (1997)
    Article CAS Google Scholar
  13. Takeuchi, M. et al. SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J. Biol. Chem. 272, 11943–11951 (1997)
    Article CAS Google Scholar
  14. Scannevin, R. H. & Huganir, R. L. Postsynaptic organization and regulation of excitatory synapses. Nature Rev. Neurosci. 1, 133–141 (2000)
    Article CAS Google Scholar
  15. Kim, E. & Sheng, M. PDZ domain proteins of synapses. Nature Rev. Neurosci. 5, 771–781 (2004)
    Article CAS Google Scholar
  16. Funke, L., Dakoji, S. & Bredt, D. S. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu. Rev. Biochem. 74, 219–245 (2005)
    Article CAS Google Scholar
  17. Welch, J. W., Wang, D. & Feng, G. Differential mRNA expression and protein localization of the SAP90/PSD-95-associated proteins (SAPAPs) in the nervous system of the mouse. J. Comp. Neurol. 472, 24–39 (2004)
    Article CAS Google Scholar
  18. Kindler, S., Rehbein, M., Classen, B., Richter, D. & Bockers, T. M. Distinct spatiotemporal expression of SAPAP transcripts in the developing rat brain: a novel dendritically localized mRNA. Brain Res. Mol. Brain Res. 126, 14–21 (2004)
    Article CAS Google Scholar
  19. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002)
    Article CAS Google Scholar
  20. Prybylowski, K. & Wenthold, R. J. _N_-Methyl-D-aspartate receptors: subunit assembly and trafficking to the synapse. J. Biol. Chem. 279, 9673–9676 (2004)
    Article CAS Google Scholar
  21. Nicoll, R. A., Tomita, S. & Bredt, D. S. Auxiliary subunits assist AMPA-type glutamate receptors. Science 311, 1253–1256 (2006)
    Article ADS CAS Google Scholar
  22. Sheng, M., Cummings, J., Roldan, L. A., Jan, Y. N. & Jan, L. Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368, 144–147 (1994)
    Article ADS CAS Google Scholar
  23. Shi, J., Aamodt, S. M. & Constantine-Paton, M. Temporal correlations between functional and molecular changes in NMDA receptors and GABA neurotransmission in the superior colliculus. J. Neurosci. 17, 6264–6276 (1997)
    Article CAS Google Scholar
  24. Stocca, G. & Vicini, S. Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J. Physiol. 507, 13–24 (1998)
    Article CAS Google Scholar
  25. Tovar, K. R. & Westbrook, G. L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci. 19, 4180–4188 (1999)
    Article CAS Google Scholar
  26. Chapman, D. E., Keefe, K. A. & Wilcox, K. S. Evidence for functionally distinct synaptic NMDA receptors in ventromedial versus dorsolateral striatum. J. Neurophysiol. 89, 69–80 (2003)
    Article CAS Google Scholar
  27. Li, L., Murphy, T. H., Hayden, M. R. & Raymond, L. A. Enhanced striatal NR2B-containing methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. J. Neurophysiol. 92, 2738–2746 (2004)
    Article CAS Google Scholar
  28. Sans, N. et al. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci. 20, 1260–1271 (2000)
    Article CAS Google Scholar
  29. Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35, 345–353 (2002)
    Article CAS Google Scholar
  30. Prybylowski, K. et al. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47, 845–857 (2005)
    Article CAS Google Scholar
  31. van Zundert, B., Yoshii, A. & Constantine-Paton, M. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci. 27, 428–437 (2004)
    Article CAS Google Scholar
  32. Valtschanoff, J. G. & Weinberg, R. J. Laminar organization of the NMDA receptor complex within the postsynaptic density. J. Neurosci. 21, 1211–1217 (2001)
    Article CAS Google Scholar
  33. Day, M. et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature Neurosci. 9, 251–259 (2006)
    Article CAS Google Scholar
  34. Kreitzer, A. C. & Malenka, R. C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643–647 (2007)
    Article CAS Google Scholar
  35. Surmeier, D. J., Ding. J, Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235 (2007)
    Article CAS Google Scholar
  36. Arnold, P. D. et al. Association of a glutamate (NMDA) subunit receptor gene (GRIN2B) with obsessive-compulsive disorder: a preliminary study. Psychopharmacology 174, 530–538 (2004)
    Article CAS Google Scholar
  37. Arnold, P. D., Sicard, T., Burroughs, E., Richter, M. A. & Kennedy, J. L. Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch. Gen. Psychiatry 63, 769–776 (2006)
    Article CAS Google Scholar
  38. Dickel, D. E. et al. Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive-compulsive disorder. Arch. Gen. Psychiatry 63, 778–785 (2006)
    Article CAS Google Scholar
  39. Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998)
    Article ADS CAS Google Scholar
  40. Greer, J. M. & Capecchi, M. R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002)
    Article CAS Google Scholar
  41. Pogorelov, V. M., Rodriguiz, R. M., Insco, M. L., Caron, M. G. & Wetsel, W. C. Novelty seeking and stereotypic activation of behavior in mice with disruption of the DAT1 gene. Neuropsychopharmacology 30, 1818–1831 (2005)
    Article CAS Google Scholar
  42. Weisstaub, N. V. et al. Cortical 5–HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313, 536–540 (2006)
    Article ADS CAS Google Scholar
  43. Bakeman, R. & Gottman, J. M. in Observing Interaction: An Introduction to Sequential Analyses 56–90 (Cambridge Univ. Press, New York, 1997)
    Book Google Scholar
  44. Treit, D. & Fundytus, M. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol. Biochem. Behav. 31, 959–962 (1988)
    Article CAS Google Scholar
  45. Crawley, J. N. & Goodwin, F. K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav. 12, 167–170 (1980)
    Article Google Scholar
  46. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000)
    Article CAS Google Scholar
  47. Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O. & Lichtman, J. W. Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron 27, 219–225 (2000)
    Article CAS Google Scholar
  48. Lois, C., Hong, E. J., Pease, S., Brown, E. J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002)
    Article ADS CAS Google Scholar
  49. Parker, M. J., Zhao, S., Bredt, D. S., Sanes, J. R. & Feng, G. PSD93 regulates synaptic stability at neuronal cholinergic synapses. J. Neurosci. 24, 378–388 (2004)
    Article CAS Google Scholar
  50. Lau, L. F. & Huganir, R. L. Differential tyrosine phosphorylation of _N_-methyl-D-aspartate receptor subunits. J. Biol. Chem. 270, 20036–20041 (1995)
    Article CAS Google Scholar

Download references