Structural basis of Dscam isoform specificity (original) (raw)
References
Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell101, 671–684 (2000) ArticleCAS Google Scholar
Wojtowicz, W. M., Flanagan, J. J., Millard, S. S., Zipursky, S. L. & Clemens, J. C. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell118, 619–633 (2004) ArticleCAS Google Scholar
Schmucker, D. & Flanagan, J. G. Generation of recognition diversity in the nervous system. Neuron44, 219–222 (2004) ArticleCAS Google Scholar
Neves, G., Zucker, J., Daly, M. & Chess, A. Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nature Genet.36, 240–246 (2004) ArticleCAS Google Scholar
Watson, F. L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science309, 1874–1878 (2005) ArticleADSCAS Google Scholar
Wang, J., Zugates, C. T., Liang, I. H., Lee, C. H. & Lee, T. Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron33, 559–571 (2002) ArticleCAS Google Scholar
Hummel, T. et al. Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Neuron37, 221–231 (2003) ArticleCAS Google Scholar
Zhan, X. L. et al. Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron43, 673–686 (2004) ArticleCAS Google Scholar
Zhu, H. et al. Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. Nature Neurosci.9, 349–355 (2006) ArticleCAS Google Scholar
Chen, B. E. et al. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell125, 607–620 (2006) ArticleCAS Google Scholar
Hughes, M. et al. Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron54, 417–427 (2007) ArticleCAS Google Scholar
Matthews, B. et al. Dendrite self-avoidance is controlled by Dscam. Cell129, 593–604 (2007) ArticleCAS Google Scholar
Soba, P. et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron54, 403–416 (2007) ArticleCAS Google Scholar
Dong, Y., Taylor, H. E. & Dimopoulos, G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol.4, e229 (2006) Article Google Scholar
Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative staining and image classification—powerful tools in modern electron microscopy. Biol. Proced. Online6, 23–34 (2004) ArticleCAS Google Scholar
Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein–protein recognition sites. J. Mol. Biol.285, 2177–2198 (1999) ArticleCAS Google Scholar
Su, X. D. et al. Crystal structure of hemolin: a horseshoe shape with implications for homophilic adhesion. Science281, 991–995 (1998) ArticleADSCAS Google Scholar
Freigang, J. et al. The crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion. Cell101, 425–433 (2000) ArticleCAS Google Scholar
Schurmann, G., Haspel, J., Grumet, M. & Erickson, H. P. Cell adhesion molecule L1 in folded (horseshoe) and extended conformations. Mol. Biol. Cell12, 1765–1773 (2001) ArticleCAS Google Scholar
Harpaz, Y. & Chothia, C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol.238, 528–539 (1994) ArticleCAS Google Scholar
Wang, J. Protein recognition by cell surface receptors: physiological receptors versus virus interactions. Trends Biochem. Sci.27, 122–126 (2002) ArticleCAS Google Scholar
Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res.18, 6097–6100 (1990) ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. in Macromolecular Crystallography (eds Carter, C. W. Jr & Sweet, R. M.) 307–326 (Academic Press, New York, 1997) Book Google Scholar
Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr.58, 1772–1779 (2002) Article Google Scholar
La Fortelle, E. & Bricogne, G. in Methods in Enzymology, Macromolecular Crystallography (eds Carter, C. W. Jr & Sweet, R. M.) 472–494 (Academic Press, New York, 1997) Book Google Scholar
CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994)
McRee, D. E. XtalView/Xfit—A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol.125, 156–165 (1999) ArticleCAS Google Scholar
Cowtan, K., Zhang, K. & Main, P. in International Tables for Crystallography (eds Rossmann, M. & Arnold, E.) 25.2.5 (Kluwer Academic Publishers, Dordrecht, 2001) Google Scholar
Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol.6, 458–463 (1999) ArticleCAS Google Scholar
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997) ArticleCAS Google Scholar
Adams, P. D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat.11, 53–55 (2004) ArticleCAS Google Scholar
Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative staining and image classification—powerful tools in modern electron microscopy. Biol. Proced. Online6, 23–34 (2004) ArticleCAS Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996) ArticleCAS Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994) ArticleCAS Google Scholar