The loss of ions from Venus through the plasma wake (original) (raw)

Nature volume 450, pages 650–653 (2007)Cite this article

This article has been updated

Abstract

Venus, unlike Earth, is an extremely dry planet although both began with similar masses, distances from the Sun, and presumably water inventories. The high deuterium-to-hydrogen ratio in the venusian atmosphere relative to Earth’s also indicates that the atmosphere has undergone significantly different evolution over the age of the Solar System1. Present-day thermal escape is low for all atmospheric species. However, hydrogen can escape by means of collisions with hot atoms from ionospheric photochemistry2, and although the bulk of O and O2 are gravitationally bound, heavy ions have been observed to escape3 through interaction with the solar wind. Nevertheless, their relative rates of escape, spatial distribution, and composition could not be determined from these previous measurements. Here we report Venus Express measurements showing that the dominant escaping ions are O+, He+ and H+. The escaping ions leave Venus through the plasma sheet (a central portion of the plasma wake) and in a boundary layer of the induced magnetosphere. The escape rate ratios are Q(H+)/Q(O+) = 1.9; Q(He+)/Q(O+) = 0.07. The first of these implies that the escape of H+ and O+, together with the estimated escape of neutral hydrogen and oxygen, currently takes place near the stoichometric ratio corresponding to water.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

Change history

A Correction to this paper has been published: https://doi.org/10.1038/s41586-022-04621-4

References

  1. Donahue, T. M., Grinspoon, D. H., Hartle, R. R. & Hodges, R. R. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, W. W., Hunten, D. M. & Phillips, R. J.) 385–414 (Univ. of Arizona Press, Tucson, AZ, 1997)
    Google Scholar
  2. Nagy, A. F., Cravens, T. E., Lee, J. H. & Stewart, A. I. P. Hot oxygen atoms in the upper atmosphere of Venus. Geophys. Res. Lett.8, 629–632 (1981)
    Article ADS CAS Google Scholar
  3. Mihalov, J. D. & Brace, A. The distant interplanetary wake of Venus: Plasma observations from Pioneer Venus. J. Geophys. Res.87, 9045–9053 (1982)
    Article ADS Google Scholar
  4. Intrilligator, D. S., Wolf, J. H. & Michalov, J. D. The Pioneer Venus orbiter plasma analyzer experiment. IEEE Trans. Geosci. Remote Sens.GE-18, 39–43 (1980)
    Article ADS Google Scholar
  5. Kasprzak, W. T., Niemann, H. B., Hedin, A. E., Bougher, S. W. & Hunten, D. M. Neutral composition measurements by the Pioneer Venus neutral mass spectrometer during re-entry. Geophys. Res. Lett.20, 2747–2750 (1993)
    Article ADS CAS Google Scholar
  6. Intriligator, D. S. Results of the first statistical studies of Pioneer Venus plasma observations in the distant Venus tail: Evidence for a hemispheric asymmetry in the pickup of ionospheric ions. Geophys. Res. Lett.16, 167–170 (1989)
    Article ADS CAS Google Scholar
  7. Barabash, S. et al. The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planet. Space Sci.55, 1772–1792 (2007)
    Article ADS CAS Google Scholar
  8. Zhang, T. L. et al. Magnetic field investigation of the Venus plasma environment: expected new results. Planet. Space Sci.54, 1336–1343 (2006)
    Article ADS Google Scholar
  9. Zhang, T. L. et al. Little or no solar wind enters Venus’ atmosphere at solar minimum. Nature 10.1038/nature06026 (this issue).
  10. Brace, L. H., Theis, R. F. & Hoegy, W. R. Plasma clouds above the ionopause of Venus and their implications. Planet. Space Sci.30, 29–37 (1982)
    Article ADS Google Scholar
  11. Hartle, R. E. & Grebowsky, J. M. Planetary loss from light ion escape on Venus. Adv. Space Res.15, 117–122 (1995)
    Article ADS CAS Google Scholar
  12. Luhmann, J. G., Ledvina, S. A., Lyon, J. G. & Russell, C. T. Venus O+ pickup ions: Collected PVO results and expectations for Venus Express. Planet. Space Sci.54, 1457–1471 (2006)
    Article ADS CAS Google Scholar
  13. Fox, J. L. Advances in the aeronomy of Venus and Mars. Adv. Space Res.33, 132–139 (2004)
    Article ADS CAS Google Scholar
  14. Lammer, H. et al. Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci.54, 1445–1456 (2006)
    Article ADS CAS Google Scholar
  15. McElroy, M. B., Prather, M. J. & Rodriguez, J. M. Loss of oxygen from Venus. Geophys. Res. Lett.9, 649–651 (1982)
    Article ADS CAS Google Scholar
  16. von Zahn, U., Kumar, S., Niemann, H. & Prinn, R. in Venus (eds Hunten, D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 299–430 (Univ. of Arizona Press, Tucson, AZ, 1983)
    Google Scholar
  17. Lammer, H. et al. Loss of water from Mars: Implications for the oxidation of the soil. Icarus165, 9–25 (2003)
    Article ADS CAS Google Scholar
  18. Luhmann, J. G., Kasprzak, W. T. & Russell, C. T. Space weather at Venus and its potential consequences for atmosphere evolution. J. Geophys Res.112 E04s10 10.1029/2006JE002820 (2007)
    Google Scholar
  19. McComas, D. J., Spence, H. E., Russell, C. T. & Saunders, M. A. The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res.91, 7939–7953 (1986)
    Article ADS Google Scholar
  20. Barabash, S., Fedorov, A., Lundin, R. & Sauvaud, J.-A. Martian atmospheric erosion rates. Science315, 501–503 (2007)
    Article ADS CAS Google Scholar
  21. Krasnopolsky, V. A. & Gladstone, G. R. Helium on Mars and Venus: EUVE observations and modeling. Icarus176, 395–407 (2005)
    Article ADS Google Scholar
  22. Zhang, T. L., Luhmann, J. G. & Russell, C. T. The solar cycle dependence of the location and shape of the Venus bow shock. J. Geophys. Res.95, 14961–14967 (1990)
    Article ADS Google Scholar
  23. Zhang, T. L., Luhmann, J. G. & Russell, C. T. The magnetic barrier at Venus. J. Geophys. Res.96, 11145–11153 (1991)
    Article ADS Google Scholar

Download references

Acknowledgements

We thank the European Space Agency for providing the Venus Express opportunity, and national space agencies and organizations for supporting the investigators who contributed to the success of the Venus Express plasma package.

Author Contributions S.B. is the principal investigator of the Venus Express plasma package, Analyser of Space Plasmas and Energetic Atoms (ASPERA)-4. J.A.S. is the co-principal investigator. A.F. is the leading co-investigator of the ion mass analyser of ASPERA-4. A.C. is the leading co-investigator of the electron spectrometer of ASPERA-4. T.L.Z. is the principal investigator of the magnetometer. The remaining authors are co-investigators on either of the plasma analyser or the magnetometer investigations.

Author information

Authors and Affiliations

  1. Swedish Institute of Space Physics, S-98128 Kiruna, Sweden
    S. Barabash, R. Lundin, Y. Futaana, H. Andersson, K. Brinkfeldt, A. Grigoriev, M. Holmström & M. Yamauchi
  2. Centre d’Étude Spatiale des Rayonnements, BP-44346, F-31028 Tolouse, France , Tolouse
    A. Fedorov, J. J. Sauvaud, C. Mazelle & J.-J. Thocaven
  3. IGPP, University of California, Los Angeles, California 90095, USA , California
    C. T. Russell
  4. Space Research Institute, Austrian Academy of Science, A-8042 Graz, Austria , Graz
    T. L. Zhang, W. Baumjohann & H. Lammer
  5. Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara 229-8510, Japan , Sagamihara
    K. Asamura
  6. Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK , Surrey
    A. J. Coates, D. O. Kataria & D. R. Linder
  7. University of Arizona, Tucson, Arizona 85721, USA , Arizona
    C. C. Curtis, K. C. Hsieh & B. R. Sandel
  8. University of Wales Aberystwyth, Penglais, Aberystwyth, Ceredigion SY23 3BZ, UK , Ceredigion
    M. Grande
  9. Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315, USA, West Virginia
    H. Gunell
  10. Department of Physical Sciences, University of Helsinki, Box 64, 00014 Helsinki, Finland, Helsinki
    H. E. J. Koskinen
  11. Finnish Meteorological Institute, Box 503, FIN-00101 Helsinki, Finland , Helsinki
    H. E. J. Koskinen, E. Kallio, P. Riihelä, T. Säles & W. Schmidt
  12. Space Physics Research Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2143, USA , Michigan
    J. Kozyra
  13. Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau, Germany
    N. Krupp, M. Fränz & J. Woch
  14. Space Science Laboratory, University of California, Berkeley, California 94720-7450, USA , California
    J. Luhmann
  15. Space Technology Ireland, National University of Ireland, Maynooth, Co. Kildare, Ireland , Kildare
    S. McKenna-Lawlor
  16. Instituto di Fisica dello Spazio Interplanetari, I-00133 Rome, Italy
    S. Orsini, R. Cerulli-Irelli, M. Mura, M. Milillo & M. Maggi
  17. Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723-6099, USA , Maryland
    E. Roelof & P. Brandt
  18. KFKI Research Institute for Particle and Nuclear Physics, PO Box 49, H-1525 Budapest 114, Hungary , Budapest
    K. Szego
  19. Southwest Research Institute, San Antonio, Texas 78228-0510, USA , Texas
    J. D. Winningham, R. A. Frahm, J. Scherrer & J. R. Sharber
  20. University of Bern, Physikalisches Institut, CH-3012 Bern, Switzerland
    P. Wurz & P. Bochsler

Authors

  1. S. Barabash
  2. A. Fedorov
  3. J. J. Sauvaud
  4. R. Lundin
  5. C. T. Russell
  6. Y. Futaana
  7. T. L. Zhang
  8. H. Andersson
  9. K. Brinkfeldt
  10. A. Grigoriev
  11. M. Holmström
  12. M. Yamauchi
  13. K. Asamura
  14. W. Baumjohann
  15. H. Lammer
  16. A. J. Coates
  17. D. O. Kataria
  18. D. R. Linder
  19. C. C. Curtis
  20. K. C. Hsieh
  21. B. R. Sandel
  22. M. Grande
  23. H. Gunell
  24. H. E. J. Koskinen
  25. E. Kallio
  26. P. Riihelä
  27. T. Säles
  28. W. Schmidt
  29. J. Kozyra
  30. N. Krupp
  31. M. Fränz
  32. J. Woch
  33. J. Luhmann
  34. S. McKenna-Lawlor
  35. C. Mazelle
  36. J.-J. Thocaven
  37. S. Orsini
  38. R. Cerulli-Irelli
  39. M. Mura
  40. M. Milillo
  41. M. Maggi
  42. E. Roelof
  43. P. Brandt
  44. K. Szego
  45. J. D. Winningham
  46. R. A. Frahm
  47. J. Scherrer
  48. J. R. Sharber
  49. P. Wurz
  50. P. Bochsler

Corresponding author

Correspondence toS. Barabash.

Supplementary information

Rights and permissions

About this article

Cite this article

Barabash, S., Fedorov, A., Sauvaud, J. et al. The loss of ions from Venus through the plasma wake.Nature 450, 650–653 (2007). https://doi.org/10.1038/nature06434

Download citation

This article is cited by

Editorial Summary

Still delivering

ESA's Venus Express probe has been in orbit since April 2006. Eight research papers in this issue present new results from the mission, covering the atmosphere, polar features, interactions with the solar wind and the controversial matter of venusian lightning. Håkan Svedham et al. open the section with a review of the similarities and (mostly) differences between Venus and its 'twin', the Earth. Andrew Ingersoll considers the latest results, and also how the project teams plan to make the most of the probe's remaining six years of life.