The loss of ions from Venus through the plasma wake (original) (raw)
- Letter
- Published: 29 November 2007
- A. Fedorov2,
- J. J. Sauvaud2,
- R. Lundin1,
- C. T. Russell3,
- Y. Futaana1,
- T. L. Zhang4,
- H. Andersson1,
- K. Brinkfeldt1,
- A. Grigoriev1,
- M. Holmström1,
- M. Yamauchi1,
- K. Asamura5,
- W. Baumjohann4,
- H. Lammer4,
- A. J. Coates6,
- D. O. Kataria6,
- D. R. Linder6,
- C. C. Curtis7,
- K. C. Hsieh7,
- B. R. Sandel7,
- M. Grande8,
- H. Gunell9,
- H. E. J. Koskinen10,11,
- E. Kallio11,
- P. Riihelä11,
- T. Säles11,
- W. Schmidt11,
- J. Kozyra12,
- N. Krupp13,
- M. Fränz13,
- J. Woch13,
- J. Luhmann14,
- S. McKenna-Lawlor15,
- C. Mazelle2,
- J.-J. Thocaven2,
- S. Orsini16,
- R. Cerulli-Irelli16,
- M. Mura16,
- M. Milillo16,
- M. Maggi16,
- E. Roelof17,
- P. Brandt17,
- K. Szego18,
- J. D. Winningham19,
- R. A. Frahm19,
- J. Scherrer19,
- J. R. Sharber19,
- P. Wurz20 &
- …
- P. Bochsler20
Nature volume 450, pages 650–653 (2007)Cite this article
- 1412 Accesses
- 175 Citations
- 3 Altmetric
- Metrics details
This article has been updated
Abstract
Venus, unlike Earth, is an extremely dry planet although both began with similar masses, distances from the Sun, and presumably water inventories. The high deuterium-to-hydrogen ratio in the venusian atmosphere relative to Earth’s also indicates that the atmosphere has undergone significantly different evolution over the age of the Solar System1. Present-day thermal escape is low for all atmospheric species. However, hydrogen can escape by means of collisions with hot atoms from ionospheric photochemistry2, and although the bulk of O and O2 are gravitationally bound, heavy ions have been observed to escape3 through interaction with the solar wind. Nevertheless, their relative rates of escape, spatial distribution, and composition could not be determined from these previous measurements. Here we report Venus Express measurements showing that the dominant escaping ions are O+, He+ and H+. The escaping ions leave Venus through the plasma sheet (a central portion of the plasma wake) and in a boundary layer of the induced magnetosphere. The escape rate ratios are Q(H+)/Q(O+) = 1.9; Q(He+)/Q(O+) = 0.07. The first of these implies that the escape of H+ and O+, together with the estimated escape of neutral hydrogen and oxygen, currently takes place near the stoichometric ratio corresponding to water.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
Change history
09 May 2022
A Correction to this paper has been published: https://doi.org/10.1038/s41586-022-04621-4
References
- Donahue, T. M., Grinspoon, D. H., Hartle, R. R. & Hodges, R. R. in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, W. W., Hunten, D. M. & Phillips, R. J.) 385–414 (Univ. of Arizona Press, Tucson, AZ, 1997)
Google Scholar - Nagy, A. F., Cravens, T. E., Lee, J. H. & Stewart, A. I. P. Hot oxygen atoms in the upper atmosphere of Venus. Geophys. Res. Lett.8, 629–632 (1981)
Article ADS CAS Google Scholar - Mihalov, J. D. & Brace, A. The distant interplanetary wake of Venus: Plasma observations from Pioneer Venus. J. Geophys. Res.87, 9045–9053 (1982)
Article ADS Google Scholar - Intrilligator, D. S., Wolf, J. H. & Michalov, J. D. The Pioneer Venus orbiter plasma analyzer experiment. IEEE Trans. Geosci. Remote Sens.GE-18, 39–43 (1980)
Article ADS Google Scholar - Kasprzak, W. T., Niemann, H. B., Hedin, A. E., Bougher, S. W. & Hunten, D. M. Neutral composition measurements by the Pioneer Venus neutral mass spectrometer during re-entry. Geophys. Res. Lett.20, 2747–2750 (1993)
Article ADS CAS Google Scholar - Intriligator, D. S. Results of the first statistical studies of Pioneer Venus plasma observations in the distant Venus tail: Evidence for a hemispheric asymmetry in the pickup of ionospheric ions. Geophys. Res. Lett.16, 167–170 (1989)
Article ADS CAS Google Scholar - Barabash, S. et al. The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission. Planet. Space Sci.55, 1772–1792 (2007)
Article ADS CAS Google Scholar - Zhang, T. L. et al. Magnetic field investigation of the Venus plasma environment: expected new results. Planet. Space Sci.54, 1336–1343 (2006)
Article ADS Google Scholar - Zhang, T. L. et al. Little or no solar wind enters Venus’ atmosphere at solar minimum. Nature 10.1038/nature06026 (this issue).
- Brace, L. H., Theis, R. F. & Hoegy, W. R. Plasma clouds above the ionopause of Venus and their implications. Planet. Space Sci.30, 29–37 (1982)
Article ADS Google Scholar - Hartle, R. E. & Grebowsky, J. M. Planetary loss from light ion escape on Venus. Adv. Space Res.15, 117–122 (1995)
Article ADS CAS Google Scholar - Luhmann, J. G., Ledvina, S. A., Lyon, J. G. & Russell, C. T. Venus O+ pickup ions: Collected PVO results and expectations for Venus Express. Planet. Space Sci.54, 1457–1471 (2006)
Article ADS CAS Google Scholar - Fox, J. L. Advances in the aeronomy of Venus and Mars. Adv. Space Res.33, 132–139 (2004)
Article ADS CAS Google Scholar - Lammer, H. et al. Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci.54, 1445–1456 (2006)
Article ADS CAS Google Scholar - McElroy, M. B., Prather, M. J. & Rodriguez, J. M. Loss of oxygen from Venus. Geophys. Res. Lett.9, 649–651 (1982)
Article ADS CAS Google Scholar - von Zahn, U., Kumar, S., Niemann, H. & Prinn, R. in Venus (eds Hunten, D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 299–430 (Univ. of Arizona Press, Tucson, AZ, 1983)
Google Scholar - Lammer, H. et al. Loss of water from Mars: Implications for the oxidation of the soil. Icarus165, 9–25 (2003)
Article ADS CAS Google Scholar - Luhmann, J. G., Kasprzak, W. T. & Russell, C. T. Space weather at Venus and its potential consequences for atmosphere evolution. J. Geophys Res.112 E04s10 10.1029/2006JE002820 (2007)
Google Scholar - McComas, D. J., Spence, H. E., Russell, C. T. & Saunders, M. A. The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res.91, 7939–7953 (1986)
Article ADS Google Scholar - Barabash, S., Fedorov, A., Lundin, R. & Sauvaud, J.-A. Martian atmospheric erosion rates. Science315, 501–503 (2007)
Article ADS CAS Google Scholar - Krasnopolsky, V. A. & Gladstone, G. R. Helium on Mars and Venus: EUVE observations and modeling. Icarus176, 395–407 (2005)
Article ADS Google Scholar - Zhang, T. L., Luhmann, J. G. & Russell, C. T. The solar cycle dependence of the location and shape of the Venus bow shock. J. Geophys. Res.95, 14961–14967 (1990)
Article ADS Google Scholar - Zhang, T. L., Luhmann, J. G. & Russell, C. T. The magnetic barrier at Venus. J. Geophys. Res.96, 11145–11153 (1991)
Article ADS Google Scholar
Acknowledgements
We thank the European Space Agency for providing the Venus Express opportunity, and national space agencies and organizations for supporting the investigators who contributed to the success of the Venus Express plasma package.
Author Contributions S.B. is the principal investigator of the Venus Express plasma package, Analyser of Space Plasmas and Energetic Atoms (ASPERA)-4. J.A.S. is the co-principal investigator. A.F. is the leading co-investigator of the ion mass analyser of ASPERA-4. A.C. is the leading co-investigator of the electron spectrometer of ASPERA-4. T.L.Z. is the principal investigator of the magnetometer. The remaining authors are co-investigators on either of the plasma analyser or the magnetometer investigations.
Author information
Authors and Affiliations
- Swedish Institute of Space Physics, S-98128 Kiruna, Sweden
S. Barabash, R. Lundin, Y. Futaana, H. Andersson, K. Brinkfeldt, A. Grigoriev, M. Holmström & M. Yamauchi - Centre d’Étude Spatiale des Rayonnements, BP-44346, F-31028 Tolouse, France , Tolouse
A. Fedorov, J. J. Sauvaud, C. Mazelle & J.-J. Thocaven - IGPP, University of California, Los Angeles, California 90095, USA , California
C. T. Russell - Space Research Institute, Austrian Academy of Science, A-8042 Graz, Austria , Graz
T. L. Zhang, W. Baumjohann & H. Lammer - Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Sagamihara 229-8510, Japan , Sagamihara
K. Asamura - Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK , Surrey
A. J. Coates, D. O. Kataria & D. R. Linder - University of Arizona, Tucson, Arizona 85721, USA , Arizona
C. C. Curtis, K. C. Hsieh & B. R. Sandel - University of Wales Aberystwyth, Penglais, Aberystwyth, Ceredigion SY23 3BZ, UK , Ceredigion
M. Grande - Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315, USA, West Virginia
H. Gunell - Department of Physical Sciences, University of Helsinki, Box 64, 00014 Helsinki, Finland, Helsinki
H. E. J. Koskinen - Finnish Meteorological Institute, Box 503, FIN-00101 Helsinki, Finland , Helsinki
H. E. J. Koskinen, E. Kallio, P. Riihelä, T. Säles & W. Schmidt - Space Physics Research Laboratory, University of Michigan, Ann Arbor, Michigan 48109-2143, USA , Michigan
J. Kozyra - Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau, Germany
N. Krupp, M. Fränz & J. Woch - Space Science Laboratory, University of California, Berkeley, California 94720-7450, USA , California
J. Luhmann - Space Technology Ireland, National University of Ireland, Maynooth, Co. Kildare, Ireland , Kildare
S. McKenna-Lawlor - Instituto di Fisica dello Spazio Interplanetari, I-00133 Rome, Italy
S. Orsini, R. Cerulli-Irelli, M. Mura, M. Milillo & M. Maggi - Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723-6099, USA , Maryland
E. Roelof & P. Brandt - KFKI Research Institute for Particle and Nuclear Physics, PO Box 49, H-1525 Budapest 114, Hungary , Budapest
K. Szego - Southwest Research Institute, San Antonio, Texas 78228-0510, USA , Texas
J. D. Winningham, R. A. Frahm, J. Scherrer & J. R. Sharber - University of Bern, Physikalisches Institut, CH-3012 Bern, Switzerland
P. Wurz & P. Bochsler
Authors
- S. Barabash
- A. Fedorov
- J. J. Sauvaud
- R. Lundin
- C. T. Russell
- Y. Futaana
- T. L. Zhang
- H. Andersson
- K. Brinkfeldt
- A. Grigoriev
- M. Holmström
- M. Yamauchi
- K. Asamura
- W. Baumjohann
- H. Lammer
- A. J. Coates
- D. O. Kataria
- D. R. Linder
- C. C. Curtis
- K. C. Hsieh
- B. R. Sandel
- M. Grande
- H. Gunell
- H. E. J. Koskinen
- E. Kallio
- P. Riihelä
- T. Säles
- W. Schmidt
- J. Kozyra
- N. Krupp
- M. Fränz
- J. Woch
- J. Luhmann
- S. McKenna-Lawlor
- C. Mazelle
- J.-J. Thocaven
- S. Orsini
- R. Cerulli-Irelli
- M. Mura
- M. Milillo
- M. Maggi
- E. Roelof
- P. Brandt
- K. Szego
- J. D. Winningham
- R. A. Frahm
- J. Scherrer
- J. R. Sharber
- P. Wurz
- P. Bochsler
Corresponding author
Correspondence toS. Barabash.
Supplementary information
Rights and permissions
About this article
Cite this article
Barabash, S., Fedorov, A., Sauvaud, J. et al. The loss of ions from Venus through the plasma wake.Nature 450, 650–653 (2007). https://doi.org/10.1038/nature06434
- Received: 26 June 2007
- Accepted: 29 October 2007
- Published: 29 November 2007
- Issue Date: 29 November 2007
- DOI: https://doi.org/10.1038/nature06434
This article is cited by
Editorial Summary
Still delivering
ESA's Venus Express probe has been in orbit since April 2006. Eight research papers in this issue present new results from the mission, covering the atmosphere, polar features, interactions with the solar wind and the controversial matter of venusian lightning. Håkan Svedham et al. open the section with a review of the similarities and (mostly) differences between Venus and its 'twin', the Earth. Andrew Ingersoll considers the latest results, and also how the project teams plan to make the most of the probe's remaining six years of life.