A genetic framework for improving arrhythmia therapy (original) (raw)
Zheng, Z. J., Croft, J. B., Giles, W. H. & Mensah, G. A. Sudden cardiac death in the United States, 1989 to 1998. Circulation104, 2158–2163 (2001). CASPubMed Google Scholar
Vreede-Swagemakers, J. J. M. et al. Out-of-hospital cardiac arrest in the 1990s — A population-based study in the Maastricht area on incidence, characteristics and survival. J. Am. Coll. Cardiol.30, 1500–1505 (1997). PubMed Google Scholar
Huikuri, H. V., Castellanos, A. & Myerburg, R. J. Sudden death due to cardiac arrhythmias. N. Engl. J. Med.345, 1473–1482 (2001). CASPubMed Google Scholar
Page, R. L. & Roden, D. M. Drug therapy for atrial fibrillation: where do we go from here? Nature Rev. Drug Discov.4, 899–910 (2005). CAS Google Scholar
Nattel, S. & Carlsson, L. Innovative approaches to anti-arrhythmic drug therapy. Nature Rev. Drug Discov.5, 1034–1049 (2006). CAS Google Scholar
Haissaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med.339, 659–666 (1998). CASPubMed Google Scholar
Darbar, D. et al. Familial atrial fibrillation is a genetically heterogeneous disorder. J. Am. Coll. Cardiol.41, 2185–2192 (2003). PubMed Google Scholar
Fox, C. S. et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. J. Am. Med. Assoc.291, 2851–2855 (2004). CAS Google Scholar
Yao, J. A. et al. Remodeling of gap junctional channel function in epicardial border zone of healing canine infarcts. Circ. Res.92, 437–443 (2003). CASPubMed Google Scholar
Benjamin, E. J. et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. J. Am. Med. Assoc.271, 840–844 (1994). CAS Google Scholar
Allessie, M. A. et al. Pathophysiology and prevention of atrial fibrillation. Circulation103, 769–777 (2001). CASPubMed Google Scholar
Anyukhovsky, E. P. et al. Age-associated changes in electrophysiologic remodeling: a potential contributor to initiation of atrial fibrillation. Cardiovasc. Res.66, 353–363 (2005). CASPubMed Google Scholar
Spach, M. S. Mounting evidence that fibrosis generates a major mechanism for atrial fibrillation. Circ. Res.101, 743–745 (2007). CASPubMed Google Scholar
Wijffels, M. C., Kirchhof, C. J., Dorland, R. & Allessie, M. A. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation92, 1954–1968 (1995). This paper was the first to describe the finding that rapid atrial pacing remodels the atrium and thereby predisposes individuals to atrial fibrillation. CASPubMed Google Scholar
Wijffels, M. C., Kirchhof, C. J., Dorland, R., Power, J. & Allessie, M. A. Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats: roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation96, 3710–3720 (1997). CASPubMed Google Scholar
Yue, L., Melnyk, P., Gaspo, R., Wang, Z. & Nattel, S. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ. Res.84, 776–784 (1999). CASPubMed Google Scholar
Nattel, S. New ideas about atrial fibrillation 50 years on. Nature415, 219–226 (2002). ADSCASPubMed Google Scholar
Dobrev, D. & Ravens, U. Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Res. Cardiol.98, 137–148 (2003). PubMed Google Scholar
Dun, W., Chandra, P., Danilo, P. Jr, Rosen, M. R. & Boyden, P. A. Chronic atrial fibrillation does not further decrease outward currents. It increases them. Am. J. Physiol. Heart Circ. Physiol.285, H1378–H1384 (2003). CASPubMed Google Scholar
Kumagai, K. et al. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J. Am. Coll. Cardiol.41, 2197–2204 (2003). CASPubMed Google Scholar
Nakano, Y. et al. Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J. Am. Coll. Cardiol.43, 818–825 (2004). CASPubMed Google Scholar
Cardin, S. et al. Contrasting gene expression profiles in two canine models of atrial fibrillation. Circ. Res.100, 425–433 (2007). CASPubMed Google Scholar
Nerheim, P., Birger-Botkin, S., Piracha, L. & Olshansky, B. Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation110, 247–252 (2004). PubMed Google Scholar
Han, W., Chartier, D., Li, D. & Nattel, S. Ionic remodeling of cardiac Purkinje cells by congestive heart failure. Circulation104, 2095–2100 (2001). CASPubMed Google Scholar
Akar, F. G., Spragg, D. D., Tunin, R. S., Kass, D. A. & Tomaselli, G. F. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ. Res.95, 717–725 (2004). CASPubMed Google Scholar
Frey, N., Katus, H. A., Olson, E. N. & Hill, J. A. Hypertrophy of the heart: a new therapeutic target? Circulation109, 1580–1589 (2004). PubMed Google Scholar
Schwartz, P. J. The congenital long QT syndromes from genotype to phenotype: clinical implications. J. Intern. Med.259, 39–47 (2006). CASPubMed Google Scholar
Ashrafian, H. & Watkins, H. Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications cardiomyopathies: therapeutics based on molecular phenotype. J. Am. Coll. Cardiol.49, 1251–1264 (2007). CASPubMed Google Scholar
Sen-Chowdhry, S. et al. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation115, 1710–1720 (2007). PubMed Google Scholar
Schwartz, P. J., Priori, S. G. & Napolitano, C. How really rare are rare diseases?: the intriguing case of independent compound mutations in the long QT syndrome. J. Cardiovasc. Electrophysiol.14, 1120–1121 (2003). PubMed Google Scholar
Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. The Sicilian Gambit: A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circulation84, 1831–1851 (1991). The Sicilian Gambit group popularized the idea that antiarrhythmic therapies would be most effective if targeted against specific underlying mechanisms.
Gollob, M. H. et al. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N. Engl. J. Med.354, 2677–2688 (2006). This report raised the intriguing possibility of arrhythmias as a manifestation of somatic mutations rather than germline mutations. CASPubMed Google Scholar
Niimura, H. et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N. Engl. J. Med.338, 1248–1257 (1998). CASPubMed Google Scholar
Watkins, H. et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med.326, 1108–1114 (1992). CASPubMed Google Scholar
Moss, A. J. et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation115, 2481–2489 (2007). CASPubMedPubMed Central Google Scholar
Crotti, L. et al. The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe clinical manifestations in patients with different ethnic backgrounds. Toward a mutation-specific risk stratification. Circulation116, 2366–2375 (2007). CASPubMed Google Scholar
Priori, S. G., Napolitano, C. & Schwartz, P. J. Low penetrance in the long-QT syndrome: clinical impact. Circulation99, 529–533 (1999). CASPubMed Google Scholar
Jouven, X., Desnos, M., Guerot, C. & Ducimetiere, P. Predicting sudden death in the population: the Paris Prospective Study I. Circulation99, 1978–1983 (1999). CASPubMed Google Scholar
Friedlander, Y. et al. Family history as a risk factor for primary cardiac arrest. Circulation97, 155–160 (1998). CASPubMed Google Scholar
Dekker, L. R. C. et al. Familial sudden death is an important risk factor for primary ventricular fibrillation: A case-control study in acute myocardial infarction patients. Circulation114, 1140–1145 (2006). Refs 37–40 identify a family history of SCD as a potent risk factor for SCD. PubMed Google Scholar
Splawski, I. et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science297, 1333–1336 (2002). ADSCASPubMed Google Scholar
Ellinor, P. T. & Macrae, C. A. The genetics of atrial fibrillation. J. Cardiovasc. Electrophysiol.14, 1007–1009 (2003). PubMed Google Scholar
Darbar, D., Hardy, A., Haines, J. L. & Roden, D. M. A novel locus on chromosome 5 for familial atrial fibrillation associated with prolonged signal-averaged p-wave. J. Am. Coll. Cardiol. (in the press).
Gudbjartsson, D. F. et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature448, 353–357 (2007). ADSCASPubMed Google Scholar
Mommersteeg, M. T. M. et al. Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ. Res.101, 902–909 (2007). CASPubMed Google Scholar
Arking, D. E. et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nature Genet.38, 644–651 (2006). CASPubMed Google Scholar
Aarnoudse, A. J. et al. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam study. Circulation116, 10–16 (2007). PubMed Google Scholar
Post, W. et al. Associations between genetic variants in the NOS1AP (CAPON) gene and cardiac repolarization in the Old Order Amish. Hum. Hered.64, 214–219 (2007). CASPubMedPubMed Central Google Scholar
Lehnart, S. E. et al. Inherited arrhythmias: A National Heart, Lung, and Blood Institute and Office of Rare Diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation116, 2325–2345 (2007). CASPubMed Google Scholar
Lehnart, S. & Marks, A. R. Regulation of ryanodine receptors in the heart. Circ. Res.101, 746–749 (2007). CASPubMed Google Scholar
Priori, S. G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation103, 196–200 (2001). CASPubMed Google Scholar
Lahat, H. et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am. J. Hum. Genet.69, 1378–1384 (2001). CASPubMedPubMed Central Google Scholar
Cerrone, M. et al. Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor (RyR2). Circ. Res.96, e77–e82 (2005). CASPubMed Google Scholar
Knollmann, B. C. et al. Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J. Clin. Invest.116, 2510–2520 (2006). CASPubMedPubMed Central Google Scholar
Chopra, N. et al. Modest reductions of cardiac calsequestrin increase sarcoplasmic reticulum Ca2+ leak independent of luminal Ca2+ and trigger ventricular arrhythmias in mice. Circ. Res.101, 617–626 (2007). CASPubMed Google Scholar
Vest, J. A. et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation111, 2025–2032 (2005). CASPubMed Google Scholar
Wehrens, X. H. et al. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc. Natl Acad. Sci. USA103, 511–518 (2006). ADSCASPubMed Google Scholar
Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell101, 365–376 (2000). CASPubMed Google Scholar
Reiken, S. R. et al. Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts: role of phosphatases and response to isoproterenol. J. Biol. Chem.278, 444–453 (2002). PubMed Google Scholar
Wehrens, X. H. et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science304, 292–296 (2004). ADSCASPubMed Google Scholar
Benkusky, N. A. et al. Intact beta-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase A phosphorylation site in the cardiac ryanodine receptor. Circ. Res.101, 819–829 (2007). CASPubMed Google Scholar
Xiao, J. et al. Removal of FKBP12.6 does not alter the conductance and activation of cardiac ryanodine receptor and the susceptibility to stress-induced ventricular arrhythmias. J. Biol. Chem.282, 34828–34838 (2007). CASPubMedPubMed Central Google Scholar
Hunt, D. J. et al. K201 (JTV519) suppresses spontaneous Ca2+ release and [3H]ryanodine binding to RyR2 irrespective of FKBP12.6 association. Biochem. J.404, 431–438 (2007). CASPubMedPubMed Central Google Scholar
Spirito, P., Seidman, C. E., McKenna, W. J. & Maron, B. J. The management of hypertrophic cardiomyopathy. N. Engl. J. Med.336, 775–785 (1997). CASPubMed Google Scholar
Knollmann, B. C. et al. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ. Res.92, 428–436 (2003). CASPubMed Google Scholar
Sirenko, S.G., Potter, J. D. & Knollmann, B. C. Differential effect of troponin T mutations on the inotropic responsiveness of mouse hearts — role of myofilament Ca2+ sensitivity increase. J. Physiol.575, 201–213 (2006). CASPubMedPubMed Central Google Scholar
Ai, X., Curran, J. W., Shannon, T. R., Bers, D. M. & Pogwizd, S. M. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ. Res.97, 1314–1322 (2005). CASPubMed Google Scholar
Curran, J., Hinton, M. J., Rios, E., Bers, D. M. & Shannon, T. R. Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ. Res.100, 391–398 (2007). CASPubMed Google Scholar
Anderson, M. E. et al. KN-93, an inhibitor of multifunctional Ca2+/calmodulin dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J. Pharmacol. Exp.Ther.287, 996–1006 (1998). CASPubMed Google Scholar
Mazur, A., Roden, D. M. & Anderson, M. E. Systemic administration of calmodulin antagonist W-7 or protein kinase A inhibitor H-8 prevents torsade de pointes in rabbits. Circulation100, 2437–2442 (1999). CASPubMed Google Scholar
Zhang, R. et al. Calmodulin kinase II inhibition protects against structural heart disease. Nature Med.11, 409–417 (2005). This paper reports that transgenic mice expressing a CaMKII-inhibitory peptide were protected against post-myocardial-infarction remodelling and arrhythmias. ADSCASPubMed Google Scholar
Khoo, M. S. et al. Death, cardiac dysfunction and arrhythmias due to up-regulation of calmodulin kinase II in calcineurin-induced cardiomyopathy. Circulation114, 1352–1359 (2006). CASPubMed Google Scholar
Sasano, T., McDonald, A. D., Kikuchi, K. & Donahue, J. K. Molecular ablation of ventricular tachycardia after myocardial infarction. Nature Med.12, 1256–1258 (2006). CASPubMed Google Scholar
Bucchi, A. et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation114, 992–999 (2006). PubMed Google Scholar
Mcanulty, J. et al. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N. Engl. J. Med.337, 1576–1583 (1997). Google Scholar
Moss, A. J. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med.346, 877–883 (2002). This was the first report from a large trial showing that prophylactic implantation of ICDs in patients at high risk for future cardiac arrest reduces mortality. PubMed Google Scholar
Bardy, G. H. et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med.352, 225–237 (2005). CASPubMed Google Scholar
Spooner, P. M. et al. Sudden cardiac death, genes, and arrhythmogenesis: consideration of new population and mechanistic approaches from a national heart, lung, and blood institute workshop, part I. Circulation103, 2361–2364 (2001). CASPubMed Google Scholar
Young, J. B. et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD trial. J. Am. Med. Assoc.289, 2685–2694 (2003). Google Scholar
The CAST Investigators. Preliminary report: Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N. Engl. J. Med.321, 406–412 (1989). This report shows that Na+-channel-blocking drugs increase mortality in patients convalescing from acute myocardial infarction.
Krishnan, S.C. & Antzelevitch, C. Flecainide-induced arrhythmia in canine ventricular epicardium. Phase 2 reentry? Circulation87, 562–572 (1993). CASPubMed Google Scholar
Lukas, A. & Antzelevitch, C. Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current. Circulation88, 2903–2915 (1993). CASPubMed Google Scholar
Coromilas, J., Saltman, A. E., Waldecker, B., Dillon, S. M. & Wit, A. L. Electrophysiological effects of flecainide on anisotropic conduction and reentry in infarcted canine hearts. Circulation91, 2245–2263 (1995). CASPubMed Google Scholar
Waldo, A. L. et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. Lancet348, 7–12 (1996). CASPubMed Google Scholar
Kober, L. et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial. Danish Investigations of Arrhythmia and Mortality on Dofetilide (DIAMOND) Study Group. Lancet356, 2052–2058 (2000). CASPubMed Google Scholar
Camm, A. J. et al. Mortality in patients after a recent myocardial infarction: A randomized, placebo-controlled trial of azimilide using heart rate variability for risk stratification. Circulation109, 990–996 (2004). PubMed Google Scholar
Roden, D. M. Drug-induced prolongation of the QT interval. N. Engl. J. Med.350, 1013–1022 (2004). CASPubMed Google Scholar
Norwegian Multicenter Study Group. Timolol-induced reduction in mortality in reinfarction in patients surviving acute myocardial infarction. N. Engl. J. Med.304, 801–807 (1981).
Beta-Blocker Heart Attack Trial Research Group. A randomized trial of propranolol in patients with acute myocardial infarction. I. Mortality results. J. Am. Med. Assoc.247, 1707–1714 (1982).
Murray, K. T., Mace, L. C. & Yang, Z. Nonantiarrhythmic drug therapy for atrial fibrillation. Heart Rhythm.4, S88–S90 (2007). Google Scholar
Li, D. et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation104, 2608–2614 (2001). CASPubMed Google Scholar
Pedersen, O. D., Bagger, H., Kober, L. & Torp-Pedersen, C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation100, 376–380 (1999). CASPubMed Google Scholar
Vermes, E. et al. Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction. Insight from the studies of left ventricular dysfunction (SOLVD) trials. Circulation107, 2926–2931 (2003). PubMed Google Scholar
Kumagai, K., Nakashima, H. & Saku, K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc. Res.62, 105–111 (2004). CASPubMed Google Scholar
Shiroshita-Takeshita, A., Schram, G., Lavoie, J. & Nattel, S. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation110, 2313–2319 (2004). CASPubMed Google Scholar
Marchioli, R. et al. Early protection against sudden death by _n_–3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico (GISSI)-Prevenzione. Circulation105, 1897–1903 (2002). The greatest reduction in the incidence of SCD in a large randomized clinical trial has been with fish oil (53% reduction at 4 months). CASPubMed Google Scholar
Leaf, A., Kang, J. X., Xiao, Y. F. & Billman, G. E. Clinical prevention of sudden cardiac death by _n_–3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by _n_–3 fish oils. Circulation107, 2646–2652 (2003). PubMed Google Scholar
Sarrazin, J. F. et al. Reduced incidence of vagally induced atrial fibrillation and expression levels of connexins by _n_–3 polyunsaturated fatty acids in dogs. J. Am. Coll. Cardiol.50, 1505–1512 (2007). CASPubMed Google Scholar
Morady, F. Radio-frequency ablation as treatment for cardiac arrhythmias. N. Engl. J. Med.340, 534–544 (1999). CASPubMed Google Scholar