Mendez, R. & Richter, J. D. Translational control by CPEB: a means to the end. Nature Rev. Mol. Cell Biol.2, 521–529 (2001) ArticleCAS Google Scholar
Richter, J. D. CPEB: a life in translation. Trends Biochem. Sci.32, 279–285 (2007) ArticleCAS Google Scholar
de Moor, C. H. & Richter, J. D. The Mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol. Cell. Biol.17, 6419–6426 (1997) ArticleCAS Google Scholar
Ballantyne, S., Daniel, D. L. & Wickens, M. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol. Biol. Cell8, 1633–1648 (1997) ArticleCAS Google Scholar
Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature404, 302–307 (2000) ArticleADSCAS Google Scholar
Mendez, R., Barnard, D. & Richter, J. D. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J.21, 1833–1844 (2002) ArticleCAS Google Scholar
Voeltz, G. K. & Steitz, J. A. AUUUA sequences direct mRNA deadenylation uncoupled from decay during Xenopus early development. Mol. Cell. Biol.18, 7537–7545 (1998) ArticleCAS Google Scholar
Piqué, M., López, J. M., Foissac, S., Guigó, R. & Méndez, R. A combinatorial code for CPE-mediated translational control. Cell132, 434–448 (2008) Article Google Scholar
Mendez, R., Murthy, K. G., Ryan, K., Manley, J. L. & Richter, J. D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell6, 1253–1259 (2000) ArticleCAS Google Scholar
Rempel, R. E., Sleight, S. B. & Maller, J. L. Maternal Xenopus Cdk2–cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J. Biol. Chem.270, 6843–6855 (1995) ArticleCAS Google Scholar
Charlesworth, A., Welk, J. & MacNicol, A. M. The temporal control of Wee1 mRNA translation during Xenopus oocyte maturation is regulated by cytoplasmic polyadenylation elements within the 3′-untranslated region. Dev. Biol.227, 706–719 (2000) ArticleCAS Google Scholar
Simon, R. & Richter, J. D. Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins. Mol. Cell. Biol.14, 7867–7875 (1994) ArticleCAS Google Scholar
Wu, L., Good, P. J. & Richter, J. D. The 36-kilodalton embryonic-type cytoplasmic polyadenylation element-binding protein in Xenopus laevis is ElrA, a member of the ELAV family of RNA-binding proteins. Mol. Cell. Biol.17, 6402–6409 (1997) ArticleCAS Google Scholar
De, J. et al. Identification of four CCCH zinc finger proteins in Xenopus, including a novel vertebrate protein with four zinc fingers and severely restricted expression. Gene228, 133–145 (1999) ArticleCAS Google Scholar
Lai, W. S., Carballo, E., Thorn, J. M., Kennington, E. A. & Blackshear, P. J. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to AU-rich elements and destabilization of mRNA. J. Biol. Chem.275, 17827–17837 (2000) ArticleCAS Google Scholar
Parry, D. H., Hickson, G. R. & O’Farrell, P. H. Cyclin B destruction triggers changes in kinetochore behavior essential for successful anaphase. Curr. Biol.13, 647–653 (2003) ArticleCAS Google Scholar
Yang, Z. et al. Silencing mitosin induces misaligned chromosomes, premature chromosome decondensation before anaphase onset, and mitotic cell death. Mol. Cell. Biol.25, 4062–4074 (2005) ArticleCAS Google Scholar
Collart, M. A. Global control of gene expression in yeast by the Ccr4–Not complex. Gene313, 1–16 (2003) ArticleCAS Google Scholar
Morita, M. et al. Depletion of mammalian CCR4b deadenylase triggers increment of the p27Kip1 mRNA level and impairs cell growth. Mol. Cell. Biol.13, 4980–4990 (2007) Article Google Scholar
Reimann, J. D. et al. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell105, 645–655 (2001) ArticleCAS Google Scholar
Margottin-Goguet, F. et al. Prophase destruction of Emi1 by the SCF(βTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell4, 813–826 (2003) ArticleCAS Google Scholar
Tung, J. J. et al. A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proc. Natl Acad. Sci. USA102, 4318–4323 (2005) ArticleADSCAS Google Scholar
Ohe, M., Inoue, D., Kanemori, Y. & Sagata, N. Erp1/Emi2 is essential for the meiosis I to meiosis II transition in Xenopus oocytes. Dev. Biol.303, 157–164 (2007) ArticleCAS Google Scholar
Tung, J. J., Padmanabhan, K., Hansen, D. V., Richter, J. D. & Jackson, P. K. Translational unmasking of Emi2 directs cytostatic factor arrest in meiosis II. Cell Cycle6, 725–731 (2007) ArticleCAS Google Scholar
Inoue, D., Ohe, M., Kanemori, Y., Nobui, T. & Sagata, N. A direct link of the Mos–MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs. Nature446, 1100–1104 (2007) ArticleADSCAS Google Scholar
Nishiyama, T., Ohsumi, K. & Kishimoto, T. Phosphorylation of Erp1 by p90rsk is required for cytostatic factor arrest in Xenopus laevis eggs. Nature446, 1096–1099 (2007) ArticleADSCAS Google Scholar
Liu, J., Grimison, B. & Maller, J. L. New insight into metaphase arrest by cytostatic factor: from establishment to release. Oncogene26, 1286–1289 (2007) ArticleCAS Google Scholar
Ferrell, J. E. Building a cellular switch: more lessons from a good egg. Bioessays21, 866–870 (1999) Article Google Scholar
Ferrell, J. E. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol.14, 140–148 (2002) ArticleCAS Google Scholar
Brandman, O., Ferrell, J. E., Li, R. & Meyer, T. Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science310, 496–498 (2005) ArticleADSMathSciNetCAS Google Scholar
Castro, A., Mandart, E., Lorca, T. & Galas, S. Involvement of Aurora A kinase during meiosis I–II transition in Xenopus oocytes. J. Biol. Chem.278, 2236–2241 (2003) ArticleCAS Google Scholar
Charlesworth, A., Cox, L. L. & MacNicol, A. M. Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. J. Biol. Chem.279, 17650–17659 (2004) ArticleCAS Google Scholar
Hake, L. E. & Richter, J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell79, 617–627 (1994) ArticleCAS Google Scholar
Aoki, K., Matsumoto, K. & Tsujimoto, M. Xenopus cold-inducible RNA-binding protein 2 interacts with ElrA, the Xenopus homolog of HuR, and inhibits deadenylation of specific mRNAs. J. Biol. Chem.278, 48491–48497 (2003) ArticleCAS Google Scholar