Control of segment number in vertebrate embryos (original) (raw)

References

  1. Cooke, J. & Zeeman, E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976)
    Article ADS CAS Google Scholar
  2. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997)
    Article CAS Google Scholar
  3. Dequeant, M. L. & Pourquié, O. Segmental patterning of the vertebrate embryonic axis. Nature Rev . Genet. 9, 370–382 (2008)
    CAS Google Scholar
  4. Dequeant, M. L. et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006)
    Article ADS CAS Google Scholar
  5. Dubrulle, J., McGrew, M. J. & Pourquie, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001)
    Article CAS Google Scholar
  6. Sawada, A. et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 128, 4873–4880 (2001)
    Article CAS Google Scholar
  7. Aulehla, A. et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395–406 (2003)
    Article CAS Google Scholar
  8. Aulehla, A. et al. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nature Cell Biol. 10, 186–193 (2008)
    Article CAS Google Scholar
  9. Richardson, M. K., Allen, S. P., Wright, G. M., Raynaud, A. & Hanken, J. Somite number and vertebrate evolution. Development 125, 151–160 (1998)
    Article CAS Google Scholar
  10. Delfini, M. C., Dubrulle, J., Malapert, P., Chal, J. & Pourquie, O. Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc. Natl Acad. Sci. USA 102, 11343–11348 (2005)
    Article ADS CAS Google Scholar
  11. Wittler, L. et al. Expression of Msgn1 in the presomitic mesoderm is controlled by synergism of WNT signalling and Tbx6 . EMBO Rep. 8, 784–789 (2007)
    Article CAS Google Scholar
  12. Nakajima, Y., Morimoto, M., Takahashi, Y., Koseki, H. & Saga, Y. Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development 133, 2517–2525 (2006)
    Article CAS Google Scholar
  13. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet. 21, 444–448 (1999)
    Article CAS Google Scholar
  14. Diez del Corral, R. et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40, 65–79 (2003)
    Article CAS Google Scholar
  15. Burgess, R., Cserjesi, P., Ligon, K. L. & Olson, E. N. Paraxis: a basic helix–loop–helix protein expressed in paraxial mesoderm and developing somites. Dev. Biol. 168, 296–306 (1995)
    Article CAS Google Scholar
  16. Mansouri, A. et al. Paired-related murine homeobox gene expressed in the developing sclerotome, kidney, and nervous system. Dev. Dyn. 210, 53–65 (1997)
    Article CAS Google Scholar
  17. Yoon, J. K. & Wold, B. The bHLH regulator pMesogenin1 is required for maturation and segmentation of paraxial mesoderm. Genes Dev. 14, 3204–3214 (2000)
    Article CAS Google Scholar
  18. Sassoon, D. et al. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341, 303–307 (1989)
    Article ADS CAS Google Scholar
  19. Pownall, M. E. & Emerson, C. P. J. Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev. Biol. 151, 67–79 (1992)
    Article CAS Google Scholar
  20. Yoon, J. K., Moon, R. T. & Wold, B. The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes. Dev. Biol. 222, 376–391 (2000)
    Article CAS Google Scholar
  21. McGrew, M. J., Dale, J. K., Fraboulet, S. & Pourquie, O. The lunatic Fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol. 8, 979–982 (1998)
    Article CAS Google Scholar
  22. Forsberg, H., Crozet, F. & Brown, N. A. Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr. Biol. 8, 1027–1030 (1998)
    Article CAS Google Scholar
  23. Zug, G. R., Vitt, L. J. & Caldwell, J. P. Herpetology: an Introductory Biology of Amphibians and Reptiles 2nd edn (Academic, San Diego, 2001)
    Google Scholar
  24. Tam, P. P. The control of somitogenesis in mouse embryos. J. Embryol. Exp. Morphol. 65 (Suppl). 103–128 (1981)
    PubMed Google Scholar
  25. Primmett, D. R., Norris, W. E., Carlson, G. J., Keynes, R. J. & Stern, C. D. Periodic segmental anomalies induced by heat shock in the chicken embryo are associated with the cell cycle. Development 105, 119–130 (1989)
    Article CAS Google Scholar
  26. Giudicelli, F., Ozbudak, E. M., Wright, G. J. & Lewis, J. Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol. 5, e150 (2007)
    Article Google Scholar
  27. Cambray, N. & Wilson, V. Two distinct sources for a population of maturing axial progenitors. Development 134, 2829–2840 (2007)
    Article CAS Google Scholar
  28. Sanders, E. J., Khare, M. K., Ooi, V. C. & Bellairs, R. An experimental and morphological analysis of the tail bud mesenchyme of the chicken embryo. Anat. Embryol. (Berl.) 174, 179–185 (1986)
    Article CAS Google Scholar
  29. Shum, A. S. et al. Retinoic acid induces down-regulation of Wnt-3a, apoptosis and diversion of tail bud cells to a neural fate in the mouse embryo. Mech. Dev. 84, 17–30 (1999)
    Article CAS Google Scholar
  30. Henrique, D. et al. Expression of a Delta homologue in prospective neurons in the chicken. Nature 375, 787–790 (1995)
    Article ADS CAS Google Scholar

Download references