Control of segment number in vertebrate embryos (original) (raw)
References
Cooke, J. & Zeeman, E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol.58, 455–476 (1976) ArticleADSCAS Google Scholar
Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell91, 639–648 (1997) ArticleCAS Google Scholar
Dequeant, M. L. & Pourquié, O. Segmental patterning of the vertebrate embryonic axis. Nature Rev . Genet.9, 370–382 (2008) CAS Google Scholar
Dequeant, M. L. et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science314, 1595–1598 (2006) ArticleADSCAS Google Scholar
Dubrulle, J., McGrew, M. J. & Pourquie, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell106, 219–232 (2001) ArticleCAS Google Scholar
Sawada, A. et al. Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development128, 4873–4880 (2001) ArticleCAS Google Scholar
Aulehla, A. et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell4, 395–406 (2003) ArticleCAS Google Scholar
Aulehla, A. et al. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nature Cell Biol.10, 186–193 (2008) ArticleCAS Google Scholar
Richardson, M. K., Allen, S. P., Wright, G. M., Raynaud, A. & Hanken, J. Somite number and vertebrate evolution. Development125, 151–160 (1998) ArticleCAS Google Scholar
Delfini, M. C., Dubrulle, J., Malapert, P., Chal, J. & Pourquie, O. Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc. Natl Acad. Sci. USA102, 11343–11348 (2005) ArticleADSCAS Google Scholar
Wittler, L. et al. Expression of Msgn1 in the presomitic mesoderm is controlled by synergism of WNT signalling and Tbx6 . EMBO Rep.8, 784–789 (2007) ArticleCAS Google Scholar
Nakajima, Y., Morimoto, M., Takahashi, Y., Koseki, H. & Saga, Y. Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development133, 2517–2525 (2006) ArticleCAS Google Scholar
Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet.21, 444–448 (1999) ArticleCAS Google Scholar
Diez del Corral, R. et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron40, 65–79 (2003) ArticleCAS Google Scholar
Burgess, R., Cserjesi, P., Ligon, K. L. & Olson, E. N. Paraxis: a basic helix–loop–helix protein expressed in paraxial mesoderm and developing somites. Dev. Biol.168, 296–306 (1995) ArticleCAS Google Scholar
Mansouri, A. et al. Paired-related murine homeobox gene expressed in the developing sclerotome, kidney, and nervous system. Dev. Dyn.210, 53–65 (1997) ArticleCAS Google Scholar
Yoon, J. K. & Wold, B. The bHLH regulator pMesogenin1 is required for maturation and segmentation of paraxial mesoderm. Genes Dev.14, 3204–3214 (2000) ArticleCAS Google Scholar
Sassoon, D. et al. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature341, 303–307 (1989) ArticleADSCAS Google Scholar
Pownall, M. E. & Emerson, C. P. J. Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev. Biol.151, 67–79 (1992) ArticleCAS Google Scholar
Yoon, J. K., Moon, R. T. & Wold, B. The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes. Dev. Biol.222, 376–391 (2000) ArticleCAS Google Scholar
McGrew, M. J., Dale, J. K., Fraboulet, S. & Pourquie, O. The lunatic Fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol.8, 979–982 (1998) ArticleCAS Google Scholar
Forsberg, H., Crozet, F. & Brown, N. A. Waves of mouse Lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr. Biol.8, 1027–1030 (1998) ArticleCAS Google Scholar
Zug, G. R., Vitt, L. J. & Caldwell, J. P. Herpetology: an Introductory Biology of Amphibians and Reptiles 2nd edn (Academic, San Diego, 2001) Google Scholar
Tam, P. P. The control of somitogenesis in mouse embryos. J. Embryol. Exp. Morphol.65 (Suppl). 103–128 (1981) PubMed Google Scholar
Primmett, D. R., Norris, W. E., Carlson, G. J., Keynes, R. J. & Stern, C. D. Periodic segmental anomalies induced by heat shock in the chicken embryo are associated with the cell cycle. Development105, 119–130 (1989) ArticleCAS Google Scholar
Giudicelli, F., Ozbudak, E. M., Wright, G. J. & Lewis, J. Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol.5, e150 (2007) Article Google Scholar
Cambray, N. & Wilson, V. Two distinct sources for a population of maturing axial progenitors. Development134, 2829–2840 (2007) ArticleCAS Google Scholar
Sanders, E. J., Khare, M. K., Ooi, V. C. & Bellairs, R. An experimental and morphological analysis of the tail bud mesenchyme of the chicken embryo. Anat. Embryol. (Berl.)174, 179–185 (1986) ArticleCAS Google Scholar
Shum, A. S. et al. Retinoic acid induces down-regulation of Wnt-3a, apoptosis and diversion of tail bud cells to a neural fate in the mouse embryo. Mech. Dev.84, 17–30 (1999) ArticleCAS Google Scholar
Henrique, D. et al. Expression of a Delta homologue in prospective neurons in the chicken. Nature375, 787–790 (1995) ArticleADSCAS Google Scholar