The role of exercise and PGC1α in inflammation and chronic disease (original) (raw)
Booth, F. W., Chakravarthy, M. V., Gordon, S. E. & Spangenburg, E. E. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J. Appl. Physiol.93, 3–30 (2002). PubMed Google Scholar
Erikssen, G. et al. Changes in physical fitness and changes in mortality. Lancet352, 759–762 (1998). CASPubMed Google Scholar
Hu, F. B. et al. Adiposity as compared with physical activity in predicting mortality among women. N. Engl. J. Med.351, 2694–2703 (2004). CASPubMed Google Scholar
Kokkinos, P. et al. Exercise capacity and mortality in black and white men. Circulation117, 614–622 (2008). PubMed Google Scholar
Booth, F. W. & Lees, S. J. Fundamental questions about genes, inactivity, and chronic diseases. Physiol. Genomics28, 146–157 (2007). CASPubMed Google Scholar
McCracken, M., Jiles, R. & Blanck, H. M. Health behaviors of the young adult U.S. population: behavioral risk factor surveillance system, 2003. Prev. Chronic Dis.4, A25 (2007). PubMedPubMed Central Google Scholar
Hollmann, W., Struder, H. K., Tagarakis, C. V. & King, G. Physical activity and the elderly. Eur. J. Cardiovasc. Prev. Rehabil.14, 730–739 (2007). PubMed Google Scholar
Yates, L. B. et al. Exceptional longevity in men: modifiable factors associated with survival and function to age 90 years. Arch. Intern. Med.168, 284–290 (2008). PubMed Google Scholar
Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med.346, 393–403 (2002). CASPubMed Google Scholar
Hotamisligil, G. S. Inflammation and metabolic disorders. Nature444, 860–867 (2006). CASADS Google Scholar
Haffner, S. M. The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am. J. Cardiol.97, 3A–11A (2006). CASPubMed Google Scholar
Matter, C. M. & Handschin, C. RANTES (regulated on activation, normal T cell expressed and secreted), inflammation, obesity, and the metabolic syndrome. Circulation115, 946–948 (2007). PubMed Google Scholar
Lin, W. W. & Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest.117, 1175–1183 (2007). CASPubMedPubMed Central Google Scholar
Zhou, J. R., Blackburn, G. L. & Walker, W. A. Symposium introduction: metabolic syndrome and the onset of cancer. Am. J. Clin. Nutr.86, S817–S819 (2007). PubMed Google Scholar
Tansey, M. G. et al. Neuroinflammation in Parkinson's disease: is there sufficient evidence for mechanism-based interventional therapy? Front. Biosci.13, 709–717 (2008). CASPubMed Google Scholar
Whitton, P. S. Inflammation as a causative factor in the aetiology of Parkinson's disease. Br. J. Pharmacol.150, 963–976 (2007). CASPubMedPubMed Central Google Scholar
Zipp, F. & Aktas, O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci.29, 518–527 (2006). CASPubMed Google Scholar
Cotman, C. W., Berchtold, N. C. & Christie, L. A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci.30, 464–472 (2007). CASPubMed Google Scholar
Perry, V. H., Cunningham, C. & Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nature Rev. Immunol.7, 161–167 (2007). CAS Google Scholar
Febbraio, M. A. Exercise and inflammation. J. Appl. Physiol.103, 376–377 (2007). CASPubMed Google Scholar
Gleeson, M. Immune function in sport and exercise. J. Appl. Physiol.103, 693–699 (2007). CASPubMed Google Scholar
Nieman, D. C. Current perspective on exercise immunology. Curr. Sports Med. Rep.2, 239–242 (2003). PubMed Google Scholar
Gleeson, M., McFarlin, B. & Flynn, M. Exercise and Toll-like receptors. Exerc. Immunol. Rev.12, 34–53 (2006). PubMed Google Scholar
Gleeson, M., Nieman, D. C. & Pedersen, B. K. Exercise, nutrition and immune function. J. Sports Sci.22, 115–125 (2004). PubMed Google Scholar
Pedersen, B. K., Akerstrom, T. C., Nielsen, A. R. & Fischer, C. P. Role of myokines in exercise and metabolism. J. Appl. Physiol.103, 1093–1098 (2007). CAS Google Scholar
Kristiansen, O. P. & Mandrup-Poulsen, T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes54, S114–S124 (2005). CASPubMed Google Scholar
Sarkar, D. & Fisher, P. B. Molecular mechanisms of aging-associated inflammation. Cancer Lett.236, 13–23 (2006). CASPubMed Google Scholar
Bremmer, M. A. et al. Inflammatory markers in late-life depression: Results from a population-based study. J. Affect. Disord.106, 249–255 (2008). CASPubMed Google Scholar
Roubenoff, R. Physical activity, inflammation, and muscle loss. Nutr. Rev.65, S208–S212 (2007). PubMed Google Scholar
Haddad, F., Zaldivar, F., Cooper, D. M. & Adams, G. R. IL-6-induced skeletal muscle atrophy. J. Appl. Physiol.98, 911–917 (2005). CASPubMed Google Scholar
Coletti, D. et al. Tumor necrosis factor-α gene transfer induces cachexia and inhibits muscle regeneration. Genesis43, 120–128 (2005). CASPubMed Google Scholar
Manson, J. E. et al. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N. Engl. J. Med.341, 650–658 (1999). CASPubMed Google Scholar
Thomas, D. R. Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Clin. Nutr.26, 389–399 (2007). PubMed Google Scholar
Sigal, R. J. et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann. Intern. Med.147, 357–369 (2007). PubMed Google Scholar
Larson, E. B. et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann. Intern. Med.144, 73–81 (2006). PubMed Google Scholar
Pette, D. Historical perspectives: plasticity of mammalian skeletal muscle. J. Appl. Physiol.90, 1119–1124 (2001). CASPubMed Google Scholar
Flück, M. & Hoppeler, H. Molecular basis of skeletal muscle plasticity — from gene to form and function. Rev. Physiol. Biochem. Pharmacol.146, 159–216 (2003). PubMed Google Scholar
Glass, D. J. Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol.37, 1974–1984 (2005). CASPubMed Google Scholar
Chin, E. R. et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev.12, 2499–2509 (1998). CASPubMedPubMed Central Google Scholar
Berchtold, M. W., Brinkmeier, H. & Muntener, M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev.80, 1215–1265 (2000). CASPubMed Google Scholar
Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell92, 829–839 (1998). CASPubMed Google Scholar
Pilegaard, H., Saltin, B. & Neufer, P. D. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J. Physiol.546, 851–858 (2003). CASPubMedPubMed Central Google Scholar
Hood, D. A., Irrcher, I., Ljubicic, V. & Joseph, A. M. Coordination of metabolic plasticity in skeletal muscle. J. Exp. Biol.209, 2265–2275 (2006). CASPubMed Google Scholar
Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA104, 12017–12022 (2007). PubMedPubMed CentralADS Google Scholar
Russell, A. P. et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle. Diabetes52, 2874–2881 (2003). CASPubMed Google Scholar
Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature418, 797–801 (2002). CASPubMedADS Google Scholar
Calvo, J. A. et al. Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. J. Appl. Physiol.104, 1304–1312 (2008). CASPubMed Google Scholar
Wende, A. R. et al. A role for the transcriptional coactivator PGC-1α in muscle refueling. J. Biol. Chem.282, 36642–36651 (2007). CASPubMed Google Scholar
Handschin, C. et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem.282, 30014–30021 (2007). CASPubMed Google Scholar
Handschin, C. & Spiegelman, B. M. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev.27, 728–735 (2006). CASPubMed Google Scholar
Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab.1, 361–370 (2005). PubMed Google Scholar
Hanai, J. I. et al. The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity. J. Clin. Invest.117, 3940–3951 (2007). CASPubMedPubMed Central Google Scholar
Handschin, C. et al. PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev.21, 770–783 (2007). CASPubMedPubMed Central Google Scholar
Sandri, M. et al. PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc. Natl Acad. Sci. USA103, 16260–16265 (2006). CASPubMedPubMed CentralADS Google Scholar
Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell98, 115–124 (1999). CASPubMed Google Scholar
Mootha, V. K. et al. Errα and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl Acad. Sci. USA101, 6570–6575 (2004). CASPubMedPubMed CentralADS Google Scholar
Handschin, C. et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic β cell crosstalk. J. Clin. Invest.117, 3463–3474 (2007). CASPubMedPubMed Central Google Scholar
Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet.34, 267–273 (2003). CASPubMedADS Google Scholar
Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA100, 8466–8471 (2003). CASPubMedPubMed CentralADS Google Scholar
Alexandraki, K. et al. Inflammatory process in type 2 diabetes: The role of cytokines. Ann. NY Acad. Sci.1084, 89–117 (2006). CASPubMedADS Google Scholar
St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell127, 397–408 (2006). CASPubMed Google Scholar
Valle, I. et al. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res.66, 562–573 (2005). CASPubMed Google Scholar
Moylan, J. S. & Reid, M. B. Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve35, 411–429 (2007). CASPubMed Google Scholar
Ji, L. L. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic. Biol. Med.44, 142–152 (2008). CASPubMed Google Scholar
Brown, W. J., Burton, N. W. & Rowan, P. J. Updating the evidence on physical activity and health in women. Am. J. Prev. Med.33, 404–411 (2007). PubMed Google Scholar
Perusse, L. & Bouchard, C. Genotype-environment interaction in human obesity. Nutr. Rev.57, S31–38 (1999). CASPubMed Google Scholar
Rippe, J. M. & Hess, S. The role of physical activity in the prevention and management of obesity. J. Am. Diet. Assoc.98, S31–38 (1998). CASPubMed Google Scholar
Hotamisligil, G. S. & Spiegelman, B. M. Tumor necrosis factor α: a key component of the obesity-diabetes link. Diabetes43, 1271–1278 (1994). CASPubMed Google Scholar
Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science259, 87–91 (1993). CASPubMedADS Google Scholar
Hamilton, M. T., Hamilton, D. G. & Zderic, T. W. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes56, 2655–2667 (2007). CASPubMed Google Scholar
Fraser, G. E. & Shavlik, D. J. Ten years of life: Is it a matter of choice? Arch. Intern. Med.161, 1645–1652 (2001). CASPubMed Google Scholar
Arany, Z. et al. The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab.5, 35–46 (2007). CASPubMed Google Scholar
Wagner, B. K. et al. Large-scale chemical dissection of mitochondrial function. Nature Biotechnol.26, 343–351 (2008). CAS Google Scholar
Arany, Z. et al. Gene expression-based screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation. Proc. Natl Acad. Sci. USA105, 4721–4726 (2008). CASPubMedPubMed CentralADS Google Scholar
Handschin, C. & Mootha, V. K. Estrogen-related receptor α (ERRα): a novel target in type 2 diabetes. Drug Discov. Today Ther. Strateg.2, 151–156 (2005). CAS Google Scholar